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ABSTRACT 

   Multiple Endocrine Neoplasia Type 1 (MEN1), a rare tumor syndrome 

that is inherited in an autosomal dominant pattern, is continuing to raise great 

interest for endocrinology, gastroenterology, surgery, radiology, genetics and 

molecular biology specialists. There have been two major clinical practice 

guidance papers that were published in the past two decades, with the most 

recent publication 8 years ago. Since then, several new insights on the basic 

biology and clinical features of MEN1 have appeared in the literature and 

those data are discussed in this review. The genetic and molecular interactions 

of the MEN1 encoded protein menin with transcription factors and chromatin 

modifying proteins in cell signaling pathways mediated by TGF-β/BMP, few 

nuclear receptors, Wnt/β-catenin and Hedgehog (Hh), and preclinical studies in 

mouse models have facilitated the understanding of the pathogenesis of 

MEN1-associated tumors and potential pharmacological interventions. The 

advancements in genetic diagnosis have offered a chance to recognize MEN1 

related conditions in germline MEN1 mutation negative patients. There is a 

rapidly accumulating knowledge about clinical presentation in children, 

adolescents and pregnancy that is translatable into the management of these 

very fragile patients. The discoveries about the genetic and molecular 

signatures of sporadic neuro-endocrine tumors support the development of 

clinical trials with novel targeted therapies, along with advancements in 
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diagnostic tools and surgical approaches. Finally, quality of life studies in 

patients affected by MEN1 and related conditions represent an effort necessary 

to develop a pharmacoeconomic interpretation of the problem. Because 

advances are being made both broadly and in focused areas, this timely review 

presents and discusses those studies collectively. 

 

Keywords:  Multiple Endocrine Neoplasia Type 1; MEN1; MEN1-like; 

Phenocopy; Menin; MEN1 Gene Mutations; Mutation-negative; 

Neuroendocrine Tumors; Cell Signaling; Epigenetics; Mouse Models; 

Pharmacological Therapies; Surgical Approaches; Quality of Life. 
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Graphical abstract 
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INTRODUCTION 

    Multiple Endocrine Neoplasia Type 1 (MEN1) or Wermer‟s syndrome 

(OMIM *131100) is a rare (prevalence 3-20/100,000) highly penetrant 

autosomal dominant disorder caused by germline mutations in the tumor 

suppressor gene MEN1, which encodes a 610 amino acid protein, menin (1,2). 

The diagnosis of MEN1 in a patient has relevant implications for family 

members, as first-degree relatives have a 50% risk of developing the syndrome 

and can be identified by MEN1 mutational analysis (3). Even though, as an 

autosomal dominant disorder, a gender dimorphism is not expected in MEN1, 

a female prevalence has been described (4), but the implications of these 

findings may need further validation. The age-related penetrance of MEN1 for 

all clinical features surpasses 50% by age 20 years and 95% by age 40 years (3). 

Also, instances of geographical clustering as a consequence of founder effects 

have been reported (5). 

   MEN1 is characterized by varying combinations of more than 20 

endocrine and non-endocrine tumors that show loss of heterozygosity at 

11q13, the location of the MEN1 gene, resulting in biallelic loss of MEN1 (3, 4, 

6-8) (Fig. 1). Endocrine tumors become evident either by hormonal 

overproduction or by growth of the tumor itself. The diagnosis is clinically 

suspected by the combined occurrence of two or more of the following 
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classical endocrinopathies: primary hyperparathyroidism (PHPT) due to 

parathyroid glands hyperplasia, anterior pituitary tumors, and duodeno-

pancreatic neuroendocrine tumors (DP-NETs). Other MEN1-associated tumors 

include thymus and lung NETs, type 2 gastric NETs, adrenocortical tumors, 

pheochromocytomas, facial angiofibromas, collagenomas, hibernomas, 

meningiomas, ependymomas, leiomyomas, and lipomas, and an increased risk 

to develop breast cancer in female patients (9, 10-12). Uncommon neoplasia 

associated with MEN1, such as carcinoid tumors, mammary cancer, 

parathyroid carcinoma (13), or adrenocortical carcinoma, are the causes of 

death among MEN1 patients.  

   MEN1 patients have a decreased life expectancy and the outcomes of 

treatment used in sporadic endocrine tumor counterparts are not as successful 

because of tumor multiplicity and aggressiveness (3). The prognosis is 

considerably improved by presymptomatic tumor detection and undertaking 

treatment specific for MEN1 tumors. This can happen only if clinical care for 

MEN1 patients and families is provided by a multidisciplinary MEN1-specialists‟ 

team, a true permanent task-force fully dedicated to this disorder, as 

suggested by the last guidance report published in 2012 (3).  In the past 8 years 

several important discoveries have been published about the genetic diagnosis 

of MEN1, genetics of sporadic endocrine tumors, MEN1 related conditions, the 
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biological functions of menin, potential pharmacological therapies, disease 

pathogenesis, surgical advances, and the clinical course and prognosis of 

MEN1. Therefore, a review focusing on these latest findings is certainly timely 

and useful both for the basic science investigators and clinicians to understand 

the molecular basis of MEN1 and for the management of MEN1 patients. 

  

NEW FINDINGS ABOUT THE MEN1-ENCODED PROTEIN MENIN AND ITS 

FUNCTIONAL CHARACTERIZATION 

   Menin, the protein product of the MEN1 gene, consists of 610 amino 

acids (menin isoform 2, NCBI Reference Sequence: NM_130799.2). There is a 

very rare minor isoform of menin (menin isoform 1, NCBI Reference Sequence: 

NM_000244.3), from a potential alternative splice site 15 bp downstream of 

exon-2 that inserts five amino acid residues (after amino acid 148). In the gene 

and protein databases, the norm is to designate the longest transcript as the 

primary isoform; therefore, sometimes menin is described as a 615 amino acid 

protein. 

    All studies of menin and its mutants have been conducted with the 610 

amino acid isoform because the rare 615 amino acid isoform has not been 

observed in any cell types. The 67 kDa menin is widely expressed, and at the C-

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article/doi/10.1210/endrev/bnaa031/6009070 by U

niversity of N
ew

 England user on 29 N
ovem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

terminus contains two nuclear localization signals (NLSs) (NLS1: 479-497 and 

NLS2: 588-608) and one accessory NLS (aNLS: 546-572) (9, 14). Therefore, 

menin is detected in the nucleus as shown from experiments using Green 

Fluorescent Protein (GFP)-tagged menin, immunofluorescence, and western 

blot analysis of sub-cellular fractions (9, 14). Post-translational modifications of 

menin include phosphorylation at Ser394, Thr397, Thr399, Ser487, Ser543 and 

Ser583, SUMOylation and palmitoylation, that may enhance or suppress 

menin‟s action as a tumor suppressor in the nucleus or its potential association 

with the cell membrane  (15-17). The functional contribution of these post-

translational modifications has not been studied in MEN1-associated 

endocrine cell types or in a clinical context. 

The three-dimensional (3D) crystal structure of human menin (Protein 

Data Bank No. 3U84) has been successfully deciphered after the deletion of a 

single internal loop region that was predicted to be unstructured (amino acid 

residues 460–519) (18). The 3D structure of menin resembles a „curved left 

hand‟, with a pocket formed by the „thumb‟ and the „palm‟. The structure 

consists of four domains: a long β-hairpin N-terminal domain, a 

transglutaminase-like domain („thumb‟), a helical domain that contains three 

tetratricopeptide motifs („palm‟), followed by a C-terminal domain („fingers‟) 
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(Fig.2). The pocket or cavity formed by the „thumb‟ and the „palm‟ has been 

shown to facilitate protein-protein interactions (18, 19). 

The tumor suppressor role of menin in MEN1 and the tissue restricted 

pattern of MEN1-associated tumors has been replicated in mouse models. 

Germline homozygous knockout of Men1 (Men1-/-) is embryonic lethal at 

E11.5-14.5, and germline heterozygous knockout of Men1 (Men1+/-) generates 

viable mice that develop (at age >12-15 months) hormone hypersecreting 

tumors in the pancreatic islets (mainly insulinoma), anterior pituitary (mainly 

prolactinoma), and the parathyroid glands (mainly hyperplasia) (20-24). 

Consistent with the tumor suppressor role of menin in human MEN1 tumors, a 

second hit to the non-targeted copy of Men1 resulting in loss of heterozygosity 

(LOH) is essential for tumor formation in Men1+/- mice. The pancreatic islets 

of Men1+/-
 mice show a pre-tumor stage of hyperplasia and dysplasia prior to 

LOH at the Men1 locus (25). Investigating the molecular aspects involved in 

these pre-tumor events can be helpful to understand tumor initiation and 

progression from tissue-specific menin haploinsufficiency and menin loss. 

Tissue-specificity of the tumor suppressor role of menin has been shown 

in two conditional mouse models. First, mice with conditional loss of menin in 

the liver (Men1f/f;ALB-Cre) do not develop tumors in the liver (26). Second, 

mice with conditional loss of menin in the whole pancreas (Men1f/f;PDX1-Cre) 
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develop tumors that originate from the β-cells of endocrine pancreas 

(insulinoma), and not from any cells of exocrine pancreas (27). Interestingly, 

mice with conditional loss of menin in the glucagon-secreting pancreatic islet 

α-cells (Men1f/f;GLU-Cre) do not develop glucagonomas, instead they 

predominantly develop β-cell tumors (insulinomas) (28, 29). It is possible that 

after menin loss, α-cells may trans-differentiate into β-cells, or paracrine 

signals from menin-null α-cells induce β-cell proliferation (28, 29). As expected, 

parathyroid-specific Men1-knockout mice (Men1f/f;PTH-Cre) develop 

parathyroid hyperplasia and hypercalcemia, and pancreatic islet β-cell-

specific Men1-knockout mice (Men1f/f;RIP-Cre) develop insulinomas (25,30-32). 

The Men1f/f;RIP-Cre mice also develop prolactinomas due to the leaky 

expression of the RIP-Cre transgene in pituitary lactotroph cells. Similar to 

human MEN1, the prolactinomas in mice (Men1+/- orMen1f/f;RIP-Cre) are 

frequently observed in females. The However, the reason for the gender bias 

of prolactinomas remains unknown. Although the conditional Men1-knockout 

mice do not depend on a spontaneous second hit for homozygous loss 

of Men1, tumors develop 8-10 months after embryonic menin loss, and the 

basis for the delay in tumor formation is not known. 

The functional characterization of menin has encountered various 

challenges due to the lack of any similarity to known proteins, lack of obvious 
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functional motifs/domains, lack of normal or menin-null endocrine cell lines, 

and lack of ex vivo models of MEN1 tumors or their counterpart normal tissues 

(organoids or patient derived xenograft (PDX)). Insights into how menin 

performs its tumor suppressor activity have been gained from the 

identification of interacting partners of menin in cell types unrelated to MEN1-

associated tissues, followed by validation of some relevant targets in 

translational studies (33). Even though the sequence of menin does not reveal 

any functional attributes, direct or indirect interactions with more than 50 

different proteins of known function have helped to provide clues about its 

role in various processes and pathways: cell adhesion, cell cycle progression, 

cell division, cell motility, cell signaling, cytoskeletal structure, DNA repair, 

genomic stability and transcriptional regulation (34). Highly enriched among 

the interacting partners of menin are transcription factors and epigenetic 

regulators. Menin serves as a multi-functional protein through prominent 

functional contributions in transcriptional regulation as a co-activator or co-

repressor. 
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1. Functional contributions of menin in transcriptional regulation 

The interactions of menin with various transcription factors and 

chromatin modifying proteins have shown a significant functional contribution 

in cell signaling pathways mediated by TGF-β/BMP, nuclear receptors, Wnt/β-

catenin, and Hedgehog (Hh) (35, 36). These signaling pathways stimulate 

transcription factor recruitment to their cognate DNA binding sites to regulate 

gene expression. Menin interacts with SMAD3 or SMAD1/SMAD5 to promote 

their transcriptional activity, and loss of menin in these interactions inhibits 

TGF-β and BMP signaling pathways, respectively, thus antagonizing their 

proliferation-inhibitory effects. Nuclear receptors are transcription factors that 

are activated by binding to ligands such as steroid hormones. Menin has been 

shown to act as a co-activator of gene expression mediated by some nuclear 

receptors (AR, ERα, LXRα, PPARα, PPARϒ, RXR, and VDR), and loss of menin in 

these interactions predicts suppression of specific nuclear receptor signaling 

affecting cell growth and function. Conversely, menin interacts with β-catenin 

and its associated transcription factors TCF3 and TCF4 to suppress their 

activity, and loss of menin promotes Wnt/β-catenin signaling that is known to 

increase islet β-cell proliferation. Menin interacts with PRMT5 to antagonize 

Hh signaling by depositing a PRMT5-dependent repressive histone 

modification (H4R3me2s) to suppress the expression of genes in the Hh 
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signaling pathway, GAS1 and GLI1. Loss of menin-PRMT5-mediated repressive 

marks in these genes would promote Hh signaling that can upregulate cell 

proliferation.  

Among the AP1 family of JUN transcription factors (JUNB, cJUN and JUND) 

that regulate gene expression downstream of various stimuli, menin only 

interacts with JUND and suppresses its transcriptional activity (37, 38). The 

menin interacting region of JUND maps to its N-terminus. Synthetic mutations 

in this region of JUND (human JUND amino acid residues 33-36), can disrupt 

interaction with menin. Such mutants of JUND that lack menin interaction are 

oncogenic because they promote cell proliferation, consistent with a tumor 

suppressor effect of the menin-JUND interaction (39). 

Menin interacts with DAXX (a transcriptional repressor and component of 

chromatin remodeling complex) and SUV39H1, a histone methyltransferase 

that deposits a repressive histone modification H3K9me3, to repress the 

transcription of specific genes associated with the regulation of cell 

proliferation - MME, GBX2 and IL6 (40). 

H3K4me3 is a histone modification that is primarily located in promoter 

regions near the transcriptional start site (TSS) to activate gene transcription. 

Among the MLL family members that are responsible for depositing this 

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article/doi/10.1210/endrev/bnaa031/6009070 by U

niversity of N
ew

 England user on 29 N
ovem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

histone mark, menin interacts with two histone methyltransferases MLL1 

(KMT2A) and MLL2 (KMT2B). MLL1 and MLL2 are part of multi-subunit protein 

complexes that contain ASH2L, hDPY30, HCF-2, RBBP5, and WDR5, and they 

also interact with the 140 kDa subunit of RNA-Pol-II (POLR2B) (41, 42). Loss of 

menin in this protein complex results in the transcriptional repression of 

specific genes due to gene-specific loss of H3K4me3 in the promoter region 

near the TSS (42). 

The 3D structure of menin shows a central cavity that forms a binding 

pocket for protein interaction but no obvious DNA binding domain, indicating 

that to control gene expression menin does not directly bind to DNA and is 

dependent on its interactions with components of the transcriptional 

regulatory machinery (18, 19). Co-crystallization of menin with peptides from 

the interacting region of JUND or MLL1 have shown that their binding to the 

pocket region of menin is mutually exclusive (Fig.2) (18). Interestingly, the 

menin-binding peptides of JUND and MLL1 are almost identical at the 5 

residues that are critical for binding to menin. Also, co-crystallization of menin 

with a peptide from the lens epithelium-derived growth factor (LEDGF) (amino 

acids 347-429) and MLL1 (amino acids 6-153, which contains motifs for menin-

binding and LEDGF-binding) has shown that the interaction between menin 

and MLL1 creates an interface for binding LEDGF which is a protein that directs 
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the MLL-complex to chromatin (Fig.2) (18). Similar structural studies of menin 

with other interacting partners may help to determine how menin can interact 

one-on-one with individual factors or simultaneously with multiple factors to 

control transcriptional regulation. 

2. Characterization of menin's target genes and role in cell proliferation 

   Genome-wide analysis of target genes using a menin antibody by 

techniques such as chromatin immunoprecipitation coupled with DNA 

microarray chips (ChIP-chip) or coupled with next-generation sequencing 

(ChIP-seq), or serial analysis of chromatin occupancy (SACO) have shown that 

menin is localized to hundreds of genes near promoter regions and other 

regions in the genome (35, 43, 44). Whether all or some of these genes are 

relevant to the role of menin as a tumor suppressor have not been 

determined. One target gene that was identified in the study by Scacheri et al. 

is Hlxb9/Mnx1, encoding an embryonic transcription factor responsible for islet 

β-cell differentiation (43). They compared ChIP-chip data of menin occupancy 

in human islets to gene expression data from islets of 15 and 25 week (wk) old 

mice that were wild type (WT) or menin-null (Men1f/f;RIP-Cre). Hlxb9 was one 

of the genes identified among the few genes that were both bound by menin 

and altered in expression in menin-null islets. The expression of Hlxb9 was 

higher in the menin-null islets. This finding supports the notion that tissue-
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specificity of MEN1-associated tumors may be related to the regulation of 

tissue-specific target genes by menin such as Hlxb9 in islet β-cells. Subsequent 

studies have shown menin-dependent regulation of a few β-cell differentiation 

factors (Foxa2, Nkx2.2, MafA, MafB, and Hlxb9) (45-48). 

Given the association of menin in the MLL-complex for depositing 

H3K4me3 in chromatin, another approach to characterize menin‟s target 

genes is to analyze WT and menin-null cells for H3K4me3 profiles by ChIP-chip 

or ChIP-seq coupled with cDNA microarray analysis for differential gene 

expression. This approach in WT and menin-null mouse embryonic stem cells 

(mESCs) identified the lncRNA Meg3 as a menin target gene that acts as a 

tumor suppressor, and loss of MEG3 expression has been reported in human 

sporadic pituitary adenomas (49-51). Similar analysis of WT or menin-null 

mouse embryonic fibroblasts (MEFs), and pancreatic islet-like endocrine cells 

derived by in vitro differentiation of WT or menin-null mESCs, have 

shown Hox genes as targets of menin (42, 49). Menin loss suppresses the 

expression of Hox genes. The Hox genes encode essential transcription factors 

for embryonic development and tissue homeostasis, and their aberrant 

expression has been reported in various cancer types. 

One of the obvious processes that could be dysregulated to promote 

increased cell proliferation in tumors upon loss of menin is the cell cycle. 
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Various proteins that are involved in the progression, maintenance and 

regulation of the cell cycle include cyclins, cyclin-dependent kinases (CDK), 

cyclin-dependent kinase inhibitors (CDKI), and tumor suppressors p53 and RB. 

Studies using menin-null MEFs have shown accelerated progression from 

G0/G1 to S phase, lower expression of two CDKI genes Cdkn2c (p18) and 

Cdkn1b (p27), and increased Cdk2 activity compared to WT MEFs or menin-null 

MEFs reconstituted with menin expression (52, 53). Similarly, lower expression 

of p18 and p27, and higher expression of Cdk4 has been observed in islet 

tumors of Men1+/- mice and in hyperplastic islets of mice with acute deletion 

of Men1 (Men1f/f;Cre-ER fed with tamoxifen) compared to islets from WT mice 

(53, 54). Further studies in mouse models with knockout of each of these cell 

cycle genes (Rb1, Tp53, Cdk2, Cdk4, Cdkn2c, and Cdkn1b) in the Men1+/-

 background have shown that p18 inactivation and Cdk4 activation may be 

critical for islet tumor formation upon menin loss (Table 1) (55-59).  

Although the full spectrum of specific target genes of menin from 

interaction with various transcription factors that are relevant to MEN1-

associated tumor cell proliferation remain to be determined, translational 

studies in mouse models have shown the importance of genetic interaction 

between Men1 and Pten, Kmt2a (Mll1), Kdm5a (Rbp2), Ctnnb1  (β-catenin), 

Inhbb (Activin-B) or oncogenic Kras in islet tumors and β-cell proliferation 
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(Table-1) (60-65). Combined genetic manipulation of these genes in mice with 

β-cell-specific menin loss (Men1f/f;RIP-Cre) have shown that, loss 

of Pten or Kmt2a accelerates islet tumor formation and reduces survival, loss 

of Ctnnb1 or a histone demethylase (Kdm5a) decreases islet tumor formation 

and prolongs survival, loss of Inhbb does not affect tumor formation but 

prolongs survival after 10 months of age, and expression of 

activated Kras(G12D) enhances rather than inhibits β-cell proliferation. 

         One approach that has not been explored to identify target genes of 

menin dysregulated upon menin loss in tumors, is single-cell RNA-seq analysis 

of MEN1-associated tumor cells and their counterpart normal cells. 

  

3. Unexpected function of menin as a pro-oncogenic factor in MLL-rearranged 

leukemia and its potential therapeutic applications 

   The discovery of menin‟s interaction with MLL1 exposed a surprising 

functional contribution of menin as an oncogenic co-factor of MLL-fusion 

proteins that drive an aggressive form of leukemia (41). 

The MLL1/KMT2A gene on chromosome 11q23 is involved in chromosomal 

translocations in 10% of acute leukemias with the N-terminus of MLL1 fused to 

the C-terminus of over 80 different fusion partners. The most common among 
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the translocations are t(4;11)(q21;q23), t(9;11)(p21;q23), and 

t(11;19)(q23;p13) leading to the expression of MLL-AF4, MLL-AF9 and MLL-ENL 

fusion proteins (66). The MLL rearranged (MLLr) leukemias are a distinct subset 

of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) that 

affect both children and adults. 

MLL1 is required to maintain the expression of HOX family genes, that 

regulate normal hematopoietic differentiation. Oncogenic MLL-fusion proteins 

cause acute leukemia because they upregulate the expression of HOX genes, 

including HOXA7, HOXA9 and a HOX cofactor MEIS1, which enhances the 

proliferation of hematopoietic stem cells (HSCs) and blocks hematopoietic 

differentiation. MLL-fusions that drive MLLr leukemia retain the menin-

interacting part of MLL, and interaction of menin with the MLL-fusion protein 

is critical for the maintenance of the MLL-fusion driven gene expression 

program (41). Therefore, blocking the interaction of MLL in the central 

cavity/pocket of menin with small molecules suggested an important 

therapeutic strategy for the treatment of MLLr leukemias. Over the years, 

structurally optimized chemical design has resulted in the development of 

several small molecule inhibitors of menin-MLL interaction that have greater 

potency and specificity, that are orally bioavailable, and with improved 

pharmaceutical properties (67-70). These inhibitors have been tested in 
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various experimental model systems where they block HSC proliferation and 

promote differentiation - mouse models of MLLr leukemia, patient-derived 

leukemia cell lines, and PDX models of these cell lines and human primary 

leukemia cells. The promising results from these studies have translated into 

ongoing Phase I/II clinical trials for two compounds - Kura Oncology (KO)-539, a 

structurally related analog of MI-3454 (NCT04067336), and Syndax (SNDX)-

5613, a close analog of VTP-50469 (NCT04065399). These compounds can also 

block the interaction of menin and WT MLL indicating a therapeutic role in 

non-MLLr leukemias. In a mouse model of non-MLLr leukemia where AML 

development is dependent on a mutation in the nucleophosmin (NPM1) gene 

(seen in 30% of AML patients), VTP-50469 elicited a cytotoxic effect in pre-

leukemia AML cells suggesting the potential for preventative therapy (71). 

Menin-MLL interaction inhibitors have also been tested in experimental 

models of solid tumors where menin has been shown to act as a pro-oncogenic 

co-factor, to block the interaction between menin and WT MLL. An earlier 

menin–MLL inhibitor, MI-2, has been shown to inhibit tumor cell growth of 

pediatric gliomas with a histone H3.3(p.Lys27Met) mutation (72). Antitumor 

effects of another menin–MLL inhibitor MI-503 has been demonstrated in 

castration resistant prostate cancer, Ewing sarcoma and hepatocellular 

carcinoma (68). The utility of menin-MLL interaction inhibitors in MEN1-
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associated tumor cells are potentially irrelevant, because menin acts as a 

tumor suppressor in the context of MEN1 and the tumors show biallelic menin 

loss or inactivation. However, these inhibitors have not been tested in sporadic 

endocrine tumors that retain WT menin, or sporadic tumors with specific 

menin missense mutations that retain interaction with MLL (and 

without MEN1 LOH). Availability of experimental models of such tumors could 

help to determine whether menin-MLL interaction inhibitors enhance or block 

the proliferation of endocrine tumor cells. 

  

4. Role of menin as a tumor suppressor in non-MEN1 target tissues 

Approximately, 45-50% of BRAF mutation positive colorectal cancers 

show abnormal regulation of the WNT pathway. In a recent study, a somatic 

inactivating hotspot mutation at codon R516 in the MEN1 gene (R521 as per 

menin isoform 1) was detected in 4% of BRAF mutant colorectal neoplasia 

samples (73). These data support a role of menin in colorectal tissues as a 

tumor suppressor and adds another WNT pathway associated gene to the 

pathology of colorectal cancer, given that menin has been shown to participate 

in the regulation of the WNT pathway. In another recent study that 

investigated the germline susceptibility of patients with apparently sporadic 
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osteosarcoma (malignant bone tumors), a higher than expected frequency 

(0.5%) of  pathogenic/likely-pathogenic variants of the MEN1 gene were 

observed in patients from European ancestry (74). These findings have 

important implications for the genetic testing of osteosarcoma patients and 

suggest a role of menin as a tumor suppressor in bone. However, osteogenic 

carcinomas are not described in MEN1 patients. 

  

EPIGENETIC REGULATION IN THE TUMORIGENESIS OF MEN1-ASSOCIATED 

ENDOCRINE TUMORS 

   DNA is wrapped around a histone octamer with two copies each of the 

four core histone proteins (H2A, H2B, H3 and H4), to form a nucleosome which 

is the basic unit of chromatin. Epigenetic modifications to DNA and histone 

proteins can impart a closed or open chromatin structure for controlling access 

to the transcriptional machinery and to control other processes such as DNA 

replication and repair. Various epigenetic factors form multi-protein 

complexes, that may also include lncRNAs, to function as enzymes or co-

factors for „writing‟, „reading‟ or „erasing‟ the modifications on DNA and 

histones. DNA modifications include methylation, hydroxymethylation and 

further oxidation. Posttranslational modifications (PTMs) of histones known as 
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histone „marks‟ include methylation, acetylation, phosphorylation, 

ubiquitination and other modifications. The precise regulation of these 

epigenetic modifications and their control mechanisms is essential to prevent 

abnormal cell proliferation and function that can lead to neoplasia, and other 

conditions. Because epigenetic modifications can be written, read and erased, 

they offer a therapeutic opportunity to restore aberrant epigenetic changes to 

the normal state with drugs that can block or enhance the enzymatic activity or 

critical interactions of epigenetic regulators. 

  

 1. Epigenetic events in MEN1-associated tumors 

Various epigenetic changes have been reported in MEN1-associated 

tumors (Fig. 3). Evidence for a role of epigenetic regulation in the tumors of 

MEN1 is supported by the interaction of menin with histone modifying 

proteins, particularly with histone lysine methyltransferases (KMTs) 

MLL1/KMT2A and MLL2/KMT2B in protein complexes that are responsible for 

writing the histone mark H3K4me3 (40,41). Histone methyltransferases 

methylate lysine or arginine residues in the chain of amino acids that protrude 

from the nucleosome (histone tail). Histone H3 can be methylated on lysine 

residues at positions 4, 9, 27, 36 and 79 with one, two or three methyl groups. 
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Activation or silencing of gene expression is regulated by the level of 

methylation or demethylation of specific histone H3 lysine residues. H3K4me3 

is a mark of actively transcribed genes, and H3K9me3 and H3K27me3 are 

associated with transcriptional silencing. Specific lysine demethylases (KDMs) 

can erase mono-, di- or tri-methylation of H3K4 or H3K9, such as lysine-specific 

demethylase 1 (LSD1/KDM1A), lysine-specific demethylase 2 (LSD2/KDM1B) 

and Jumonji AT-rich interacting domain 1A (JARID1A/KDM5A/RBP2). 

Epigenetic regulation in MEN1-associated islet tumors from H3K4me3 has 

been explored in mice with targeted β-cell-specific menin loss (Men1f/f;RIP-

Cre). Genome-wide distribution of the gene activation mark H3K4me3 and its 

counterpart recessive mark H3K27me3 has been examined in the pancreatic 

islets of 2-month old Men1f/f;RIP-Cre and control RIP-Cre mice (75). 

Immunohistochemistry with anti-H3K4me3 showed no significant change in 

the global/overall level of H3K4me3 in menin-null islets compared with control 

islets. In menin-null islets, loss of H3K4me3 correlated with gain of H3K27me3 

within a specific set of genes, and the expression of such genes was 

significantly decreased compared to control islets, particularly the gene 

encoding insulin-like growth factor 2 mRNA binding protein 2 (Igf2bp2). 

Interestingly, the altered epigenetic marks (loss of H3K4me3 and gain of 

H3K27me3) and lower expression of Igf2bp2 could be reversed in menin-null 
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islets with simultaneous deletion of the H3K4me3 demethylase Rbp2 

(Men1f/f;Kdm5af/f;RIP-Cre) (75). Immunohistochemistry with anti-H3K4me3 

showed no significant change in the global/overall level of H3K4me3 in menin-

Rbp2-null islets compared with control islets. The mice with β-cell-specific 

combined loss of menin and Rbp2 showed a decreased rate of islet tumor 

formation and prolonged survival (62). Therefore, specific epigenetic changes 

occurring as a consequence of menin loss could be reversed (by removing the 

Rbp2 histone demethylase), and the restoration of the epigenetic changes to 

the basal normal state could also reduce tumor formation. 

The epigenetic regulation of MEN1-associated islet tumor cell 

proliferation has been explored for the interaction of menin with an arginine 

methyltransferase PRMT5 that deposits a repressive histone mark, H4R3me2s 

(36). In MEFs, menin together with PRMT5 was shown to repress the 

expression of the Gas1 gene, which is involved in the activation of the Hh 

signaling pathway. GAS1 is required for binding of the Sonic Hedgehog (SHH) 

ligand to its receptor PTCH1 for the stimulation of the Hh signaling. Therefore, 

in tumors with menin loss, GAS1 repression would be released to activate Hh 

signaling. Treatment of 8-month old Men1f/f;RIP-Cre mice with the Hh inhibitor 

GDC-0449 for 4 weeks, reduced the proliferation of islet β-cells by 

approximately 60%. The effect on tumor size and overall survival was not 
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investigated. This study showed that blocking aberrant signaling due to the loss 

of a menin-dependent epigenetic mark could inhibit cell proliferation. 

Another histone modification that has been studied in MEN1-associated 

islet tumors is histone acetylation that is associated with active transcription. 

Acetylation marks at lysine residues in histone tails are deposited by histone 

acetyl transferases (HATs) and read by the bromodomain (BRD) contained in 

the bromodomain and extra-terminal (BET) proteins. JQ1 is a small-molecule 

inhibitor of bromodomain interactions with acetylated histones. Treatment of 

30-wk old Men1f/f;RIP-Cre mice with twice weekly injections of JQ1 for one 

month reduced the proliferation rate of islet β-cells in the tumors by 49-55% 

and significantly increased apoptosis (76). The effect on tumor size and overall 

survival was not assessed in this study. Although the specific epigenetic 

changes in histone acetylation have not been investigated in MEN1-associated 

tumors, this study highlights the potential of targeting histone acetyl marks. 

A few studies have investigated DNA methylation in MEN1-associated 

tumors which is an epigenetic modification of CpG sites, particularly in gene 

promoter regions. DNA hypermethylation usually coincides with gene 

silencing. Also, H3K4me3 has been shown to protect CpG islands from DNA 

methylation to regulate gene transcription (77). DNA methylation can be 

blocked by directly inhibiting DNA methyltransferases (DNMTs)that establish, 
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propagate and  maintain the stability of the DNA methylation mark. DNA 

hypermethylation was detected in a subset of MEN1 tumors. Global DNA 

hypermethylation was detected in parathyroid tumors and non-functioning 

pancreatic neuroendocrine tumors (pNETs) (DP-NETs) from MEN1 patients (78, 

79). Also, promoter hypermethylation was observed as a frequent event in 

MEN1-associated advanced pNETs (80). Using a somatic gene transfer system 

in RIP-TVA mice, expression of DNMT1 increased β-cell proliferation, 

suggesting that DNMT1 could be targeted to inhibit DNA hypermethylation and 

β-cell proliferation (81).  

MEN1-associated pNETs have been assessed for telomere length. 

Telomeres are specialized chromatin structures that protect chromosome 

ends. Alternative lengthening of telomeres (ALT) is a telomerase-independent 

process that is activated in cancer cells to prevent telomere shortening that 

accompanies normal proliferation of somatic cells. The correlation between 

ALT and prognosis is variable in different cancer types. Mutations in chromatin 

remodeling genes death domain-associated protein (DAXX) and α-

thalassemia/mental retardation X-linked (ATRX) correlate with ALT activation 

in sporadic pNETs (82-85). In a study of non-functioning pNETs, 48% of 

sporadic and 25% of MEN1-associated pNETs were ALT-positive, and ALT was 

associated with disease relapse (85). 
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Non-coding RNA (ncRNA)-mediated gene silencing is another epigenetic 

mechanism that has been investigated in MEN1-associated tumors. There are 

two types of ncRNAs - the short ncRNAs (less than 30 nucleotides) and the long 

ncRNAs (greater than 200 nucleotides). MicroRNAs (miRNAs) are short ncRNAs 

that regulate gene expression at the transcriptional and post-transcriptional 

level. In the hyperplastic islets of 8-wk old Men1f/f;RIP-Cre mice, and human 

parathyroid tumors, miR-24 (and its immature form miR-24-1) has been shown 

to target menin because increased miR-24 level correlated with decreased 

menin level (86-88). This mechanism of silencing menin may also contribute to 

the second somatic “hit” of MEN1 inactivation in MEN1-associated tumors 

that do not show LOH at the MEN1 locus (86). 

  

2. Exploring epigenetic diagnostic and therapeutic options 

Epigenetic changes are stable in tumors and thus can be used as 

diagnostic markers. Also, epigenetic changes are reversible and can be 

targeted to restore normal epigenetic states such as by blocking the enzymatic 

activity of epigenetic regulators, disrupting specific interactions in chromatin 

modifying protein complexes, interfering with the reading of epigenetic marks 

or targeting specific epigenetic factors for degradation. 
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Evidence for epigenetic changes in MEN1-associated tumors 

in Men1f/f;RIP-Cre mice or human tumor samples indicates a potential for 

exploring epigenetic alterations as biomarkers for diagnostic and therapeutic 

options for these tumors. Among the epigenetic alterations that can occur in 

MEN1-associated tumors are loss of the active histone mark H3K4me3 in a 

sub-set of genes, gain of the repressive histone H3K27me3 in a sub-set of 

genes, enhanced Hh signaling due to loss of a repressive histone mark 

H4R3me2s in the promoter region of Gas, histone acetylation, DNA 

hypermethylation, ALT, and miRNA-mediated silencing of menin expression 

(Fig.3 ). Whether the epigenetic changes to DNA and histones, and ALT occur 

simultaneously in MEN1-associated tumors has not been investigated. 

Experimental evidence for the reversal of changes to histone methylation 

in the tumors of Men1f/f;RIP-Cre from combined loss of a demethylase Rbp2, 

indicates a therapeutic opportunity with epigenetic drugs to inhibit this 

demethylase in MEN1-associated tumors (62). Similarly, the effect of a BETi, 

JQ1, to lower cell proliferation in the tumors of Men1f/f;RIP-Cre indicates that 

targeting histone acetylation can be further explored as a potential epigenetic 

therapeutic option in MEN1-associated tumors (76). 

Epigenetic changes to DNA from advanced tumors can be measured in 

circulating cell free DNA (cfDNA) in blood and serum samples (89). Because 
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epigenetic changes are stable in tumors and because of the non-invasive 

sample acquisition for cfDNA, this potential diagnostic assay (cfDNA liquid 

biopsy) is being explored for various cancers but has not yet been applied in a 

clinical setting for any type of cancer. Therapeutic options for targeting DNA 

hypermethylation in tumors are DNA hypomethylating agents, decitabine and 

azacytidine, that target DNA methylating enzymes. These drugs have been 

approved by the FDA for the treatment of specific hematological malignancies 

and can be explored as potential therapeutic options in experimental models 

of MEN1-associated tumors that show DNA hypermethylation.  

Telomere-specific FISH has been used to determine ALT status in human 

tumor samples and may serve as a diagnostic assay in tissue biopsies (85). 

Potential therapeutics targeting ALT have been proposed (90). Results from 

miR-24-mediated silencing of the WT MEN1 allele in human parathyroid 

tumors without 11q13 LOH can be further investigated to develop RNA 

antagomir(s)-based strategies to restore the expression of menin from the 

non-mutant copy of the MEN1 gene to control tumorigenesis (86). 

Development and use of epigenetic-based therapeutics continue to face 

several issues and challenges such as cell-specific targeting in affected tissues, 

side effects, drug resistance and achieving constant, consistent and long-

lasting effect on the target. Although several epigenetic drugs are in clinical 
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trials, these challenges need to be overcome for translating drug discovery to 

human patients (91). 

  

NOVEL INSIGHTS ON THE GENETICS OF MEN1 

   The current germline or somatic MEN1 genetic testing consists of DNA 

sequence analysis to screen coding exons and splice junctions for mutations, 

and Multiplex Ligation-dependent Probe Amplification (MLPA) for 

deletion/duplication (del/dup) analysis to screen for larger alterations. Since its 

discovery, the availability of genetic testing of the MEN1 gene has become an 

essential part in the diagnosis and management of MEN1. Genetic screening in 

MEN1 is informative to confirm the clinical diagnosis, for carrier ascertainment 

and early monitoring for tumors. Also, in families with clinical and genetic 

MEN1, relatives with a negative MEN1 genetic test can be excluded from the 

burden of life-long tumor monitoring. 

Clinical practice consensus guidelines developed by a panel of experts 

including physicians, surgeons, geneticists and other specialists from 

international centers outlined recommendations for genetic testing in MEN1 

(3). The current guidelines recommend that genetic counseling must be 

available to patients before and after genetic testing. In terms of who should 
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be tested, the guidelines state that the test should be offered to: 1) an index 

case with clinical MEN1 (presenting with two or more MEN1-associated 

endocrine tumors), 2) asymptomatic first-degree relatives of an individual with 

genetic MEN1 (known MEN1 mutation carrier) as early as before 5 years of 

age, 3) symptomatic first-degree relatives of an individual with genetic MEN1, 

who are presenting with at least one MEN1-associated tumor, and 4) patients 

with multigland parathyroid disease or parathyroid adenomas before the age 

of 30 years, and gastrinoma or multiple pancreatic islet tumors at any age. 

Sequencing and del/dup analysis can identify  

heterozygous MEN1 germline mutations in 70-90% of families with typical 

features of MEN1. A 2015 review of published germline mutations identified 

576 unique mutations, and in 2019 the Universal Mutation Database of MEN1 

mutations (UMD-MEN1 database) reported an additional 181 unique germline 

mutations (92, 93). These 757 unique MEN1 germline mutations cover the 

entire coding region with no hot spots.  

The obviously pathogenic category of germline mutations (69%) predict 

premature truncation of menin from nonsense mutations (14%), frame-shift 

mutations (42%), splice site mutations (10.5%), and large deletions (2.5%) (Fig. 

4) (92). Missense mutations (25.5%) and in-frame insertion or deletion (indel) 
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of one or more amino acids (5.5%) do not predict obvious inactivation of 

menin, and whether they are benign or pathogenic needs further investigation 

(92). Across multiple studies and among family members, no clear genotype-

phenotype correlation has emerged from an analysis of mutation types or their 

location with the clinical manifestations of MEN1 (94). Similarly, 

somatic MEN1 mutations in sporadic tumors have not revealed any hot spots 

or a clear genotype-phenotype correlation with specific tumor types. 

Germline MEN1 mutations are not found in 10-30% of cases who develop 

clinical features consistent with MEN1. These MEN1-mutation negative cases 

may carry a germline MEN1 mutation in regions that are not interrogated by 

current genetic testing methods (such as untranslated, intronic and regulatory 

regions), or the tumors may show somatic mosaicism (post-

zygotic MEN1 mutation), or they carry germline mutations in other genes (such 

as CDKN1B (Frederiksen et al., 2019)), or the clinical manifestation of multiple 

tumors is a sporadic coincidence with no underlying germline mutation. 

Candidate gene analysis, whole genome sequencing (WGS) or whole exome 

sequencing (WES) approaches have been applied to decipher the germline 

genetic defects in MEN1-mutation negative cases. 
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1. In silico analysis of MEN1 missense mutations 

One of the challenges of MEN1 genetic testing is the interpretation of 

missense and in-frame indel mutations that do not predict obvious damaging 

effects to the protein structure or function. Given that menin is a multi-

functional protein with many interacting partners, missense variants and in-

frame indels could disrupt the function of menin in various ways. 

However, reliable functional assays are not available to establish the impact 

of MEN1 missense mutations. The effect of amino acid substitutions on the 

structure or function of a protein without conducting functional studies can be 

assessed by computational (in-silico) predictive tools - SIFT (Sorting Intolerant 

From Tolerant), PolyPhen-2 (Polymorphism Phenotyping V-2), MutationTaster, 

MutationAssessor, and other similar tools. The prediction programs are based 

on various criteria such as sequence homology, physicochemical similarity 

between the alternate amino acids, evolutionary conservation, or available 3D 

structures. However, these tools are only for predictions and their interpretation 

of pathogenic consequence should be used carefully. 

The structure of menin has been used to evaluate the impact of missense 

mutations. In one study, mapping of 159 unique MEN1 missense mutations on 

the 3D structure of menin showed that 66% were located in buried residues 

that may destabilize the protein structure (19). The remaining 34% were 
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located at solvent exposed sites and might impair protein-protein interactions 

(19). This study did not compare differences between pathogenic and benign 

missense mutations. Another study performed an in silico thermodynamic 

analysis of 345 MEN1 missense mutations using various structures of menin 

alone or in complex with peptides of interacting partners (MLL, JUND or 

MLL/LEDGF) or with small molecule inhibitors of menin-MLL interaction, from 

the Protein Data Bank (PDB) (95). Thermodynamic destabilization of protein 

structure was measured as the change in free energy (G) resulting from an 

amino acid substitution that was calculated by the FoldX program. A 

higher G value (>4 kcal/mol) co-related with a strong destabilizing effect, 

thus providing an in silico positive predictive value to discriminate between 

pathogenic and benign missense variants. 

In 2015, the American College of Medical Genetics and Genomics (ACMG) 

and the Association for Molecular Pathology (AMP) recommended a variant 

classification framework in their standards and guidelines (96). This framework 

suggested a five-tier variant classification system - pathogenic, likely 

pathogenic, uncertain significance, likely benign, and benign. This classification 

was based on the allele frequency, segregation, de novo, protein expression, 

functional studies, and other factors. For the interpretation of MEN1 missense 

variants, the TENGEN network (French oncogenetics network of 
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neuroendocrine tumors) has proposed adjustments to the ACMG-AMP 

framework (97). These recommendations can be useful for the classification 

of MEN1 missense variants and the genetic diagnosis of MEN1. 

  

2. Advances in molecular genetic studies and their applications to genetic 

diagnosis of MEN1 

One of the benefits of MEN1 genetic testing is to confirm the diagnosis of 

clinical MEN1. However, MEN1 genetic testing is negative in patients with 

clinical MEN1 who present with incomplete disease manifestations that 

represent phenocopies, or MEN1-like disease characterized by tumor in as few 

as one of the three main MEN1-associated endocrine tissues. The identification 

of susceptibility genes for endocrine tumor syndromes that have at least one 

overlapping feature with MEN1, has helped to extend the genetic diagnosis 

of MEN1 mutation-negative cases to include those additional genes in the 

genetic testing approach (Fig. 5). Among the 10-30% of 

germline MEN1 mutation-negative cases with or without a family history of 

clinical MEN1, a few may rarely test positive for germline mutations in genes 

for MEN1-like conditions (CDKN1B or other CDKI genes, CDC73, CASR, GNA11, 

AP2S1, GCM2 and AIP) (34, 98, 99). Therefore, the genetic predisposition in 
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clinical MEN1-like cases should be further evaluated by genomic approaches to 

identify the responsible mutations and genes. 

One approach to find the potentially missing MEN1 mutations in clinical 

MEN1 cases is to screen the non-coding regions of MEN1 (promoter, introns 

and untranslated) that are not part of the current genetic testing methods. In 

one study, targeted next generation sequencing (tNGS) of the entire 7.2 Kb 

genomic region of MEN1 was performed, and no mutation was detected in 

16/76 patients. Also, none of the 76 cases had a point mutation or short indel 

mutation in the non-coding regions of MEN1, indicating that such mutations 

may be very rare (100).  

There is only one study that has performed WGS of constitutional and 

tumor DNA samples from patients who were mutation-negative in 

prior MEN1 genetic testing (101). Among the six patients analyzed, 

surprisingly, pathogenic MEN1 germline heterozygous mutations were 

identified in three (two splice-site variants c.1186-2A>G and p.Arg223Arg 

(CGG>CGC), and a missense variant p.Pro12Leu) that was missed in the prior 

routine genetic testing. One patient showed a pathogenic germline 

heterozygous missense mutation in CASR (p.Ile555Val), and one patient had a 

germline heterozygous deletion on chromosome 1q which included CDC73. In 

the same study, WGS of tumor DNA samples from six other mutation-negative 
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patients did not detect any somatic variants in recurrent genes that may act as 

tumor suppressors (101). Therefore, the results of this WGS analysis raises the 

possibility of missing a germline mutation in prior routine genetic testing, 

perhaps due to older sequencing or variant classification methods. Thus it may 

be useful to repeat the MEN1 genetic testing of cases who present with clinical 

MEN1 where finding an MEN1 mutation is highly likely (tumors of parathyroid, 

pituitary and endocrine pancreas; or tumors of parathyroid and endocrine 

pancreas). 

Collaborative efforts and other novel approaches can be considered to 

identify mutations in MEN1 or other genes in the 10-30% of mutation-negative 

cases of clinical MEN1. Blood transcriptome sequencing has been used for the 

identification of rare-disease genes, which is RNA-seq analysis of RNA isolated 

from whole blood samples to detect any evidence of altered transcription as a 

consequence of DNA variants (102, 103). If the transcript is expressed in blood 

cells (e.g., MEN1), effect on splicing and expression level can be detected from 

missense, synonymous, and loss-of-function (LoF) mutations within the coding 

exons. LoF mutations can lead to lower transcript levels through nonsense-

mediated decay. Also, blood transcriptome analysis can identify the decreased 

expression of one allele due to a variant in the regulatory region. When 

combined with WGS, the corresponding DNA variants in genes of interest can 
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be identified that are responsible for the altered transcription. One of the 

limitations of this approach is the inability to identify causal genes due to lack 

of expression in blood cells. Also, this approach may not successfully identify 

disease susceptibility genes if causal variants do not affect splicing or 

expression of the gene. 

  

CLINICAL COURSE OF GENETICALLY (+) AND (-) MEN1 PATIENTS 

   MEN1 is mainly characterised by the occurrence of parathyroid tumors, 

duodeno-pancreatic neuroendocrine tumors (DP-NETs), pituitary adenomas, 

and adrenal tumors (3, 104-107). A diagnosis of MEN1 can be made based on 

clinical, familial or genetic criteria. Thus, for a clinical diagnosis patients should 

have 2 or more MEN1-associated tumors; for a familial diagnosis patients 

should have 1 MEN1-associated tumor plus a first degree relative with MEN1; 

and for a genetic diagnosis a germline MEN1 mutation needs to be identified 

(105, 106). Across all of these diagnostic criteria, up to 90% of patients will be 

found to have a MEN1 mutation. To date, however no genotype-phenotype 

correlations have been reported, and even within the same family the tumor 

types, and age of tumor onset can differ significantly (105). Therefore, long 

term radiological and biochemical screening should be performed, and 
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appropriate treatment undertaken, as it has been reported that early diagnosis 

of tumors with appropriate interventions can significantly improve patient 

survival (3, 105, 108, 109).  It is important to note, however, 

that MEN1 mutations can also give rise to familial isolated primary 

hyperparathyroidism (FIHP)(110). FIHP is characterised by the occurrence of 

hereditary primary hyperparathyroidism without occurrence of other MEN1-

associated tumors during a follow up period of >10.4 years, and the 

development of primary hyperparathyroidism at 51.414 years of age (110). 

Therefore, a diagnosis of FIHP should also be considered in patients that 

present with primary hyperparathyroidism at an advanced age and show no 

further MEN1 manifestations after 10 year follow up.  

    In 10-30% of MEN1 patients that are diagnosed based on clinical 

criteria, MEN1 mutations are not identified (106, 111). These are referred to as 

phenocopies, and are clinically challenging as the manifestations and familial 

penetrance of the disease are not defined, and therefore the risk of tumor 

occurrence and subsequently the most appropriate screening protocols are 

debatable. Furthermore, analysis of a large MEN1 family cohort consisting of 

152 members, indicated that 10% of individuals within the family who were 

diagnosed as having MEN1 did not have the MEN1 mutation, thereby 

indicating that phenocopies can also occur in MEN1 patients with a family 
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history of MEN1. Determining if an individual is an MEN1   is of particular 

importance because it has been reported that MEN1 mutation negative 

patients have less aggressive disease, with the median age of first tumor 

manilfestation 13 years later, and median age of second manifestation 9 years 

later compared to MEN1 mutation positive patients (5). Furthermore, no third 

manifestations were identified in mutation negative patients, compared to 76 

patients in the mutation positive group, and median survival was 14 years 

greater in the negative versus positive MEN1 mutation patient groups 

(87 versus 73 years of age) (106). The disease course for each MEN1 mutation 

negative patient is however likely to differ, and sub-classification of this group 

based on genetic analysis will help inform the most appropriate screening and 

treatment (112). To date, a number of genes have been reported as causing 

MEN1 phenocopies. These genes include the: cyclin dependent kinase inhibitor 

1B (CDKN1B) which encodes the cell cycle regulating tumor suppressor protein 

p27
Kip1

; rearranged during transfection (RET) proto-oncogene which encodes a 

receptor tyrosine kinase (RTK) for members of the glial cell line-derived 

neurotrophic factor (GDNF) family of extracellular signaling molecules;  CDC73 

which encodes parafibromin, a subunit of the polymerase II-associated factor 

(PAF) protein complex, which associates with the RNA polymerase II subunit 

POLR2A and with a histone methyltransferase complex; CASR which encodes a 

G-protein coupled receptor (GPCR);  and aryl hydrocarbon receptor-interacting 
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protein (AIP),  which encodes a tumor suppressor protein that interacts and 

colocalises with the protein kinase A (PKA) subunits R1-alpha (PRKAR1A) 

and C-alpha (PRKACA) (3, 99, 101, 113).   

    CDKN1B mutations have been observed in patients with MEN1-

associated tumors. These patients are classified as having MEN4, and to date 

>25 cases are reported (114-116). The most common tumors to arise in MEN4 

patients are parathyroid tumors, followed by pituitary adenomas and 

pancreatic NETs, and then occasional adrenal tumors and non-endocrine 

tumors such as lipomas and meningiomas (114-116). Furthermore, details of 

the age of onset of these tumors is limited, however primary 

hyperparathyroidism has been reported in a 15 year old individual, indicating 

that, similar to MEN1, tumors may develop in MEN4 patients during childhood, 

or adolescence (117). Although the clinical manifestations appear similar to 

MEN1, some key differences have been observed, for example there are 

currently no reported cases of prolactinomas in MEN4, and the prevalence of 

duodeno-pancreatic NETs in MEN4 patients is only approximately 25%, 

compared to up to 70% in MEN1 patients (114). In addition to CDKN1B 

mutations, mutations in other CDK family members 

including: CDKN2B encoding p15INK4b; CDKN2C encoding p18INK4c; 

and CDKN1A encoding p21Cip1
 have also been identified in MEN1 patients 
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(118). The number of reported cases for these mutations is low, and therefore 

accurate predictions of tumor manifestation is difficult, however parathyroid, 

pituitary and adrenal tumors have been reported, as well as prostate and 

breast tumors in these patients (118). Moreover, it is predicted that patients 

with CDKN1B mutations only account for ~3% of MEN1-like individuals, with 

mutations in CDKN2B, CDKN2C and CDKN1A estimated to account for up to 1%, 

0.5% and 0.5%, respectively (114, 118). Therefore, mutations in the CDK family 

may only occur in a small proportion of patients defined as being MEN1 

phenocopies.    

    Analysis of patients and families diagnosed initially to have MEN1 based 

on clinical criteria, has also highlighted additional genes that may represent 

MEN1 phenocopies including RET, CDC73, CASR, and AIP (3, 99, 102, 

113). RET mutations are usually associated with MEN2 (previously MEN2A) and 

MEN2B (previously MEN3). MEN2 is characterised by the occurrence of 

medullary thyroid carcinoma (MTC), pheochromocytoma and parathyroid 

tumors; while in MEN2 parathyroid tumors are rare, and the occurrence of 

MTC and pheochromocytoma is found in association with a marfanoid habitus, 

mucosal neuromas, medullated corneal fibers, and intestinal autonomic 

ganglion dysfunction leading to megacolon (3). However, a patient presenting 

with Cushing’s disease due to a corticotrophinoma at 48 years of age, who 
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later developed primary hyperparathyroidism and  was diagnosed clinically to 

have MEN1, but in whom a MEN1 mutation was not identified,  was 

subsequently found to have MTC and pheochromocytoma at 66 years of age, 

and a RET mutation (116RETmutation (119), consistent with a diagnosis of 

MEN2. MEN1 phenocopies associated with CDC73 mutations, a gene in which 

mutations usually cause hyperparathyroidism-jaw tumor (HPT-JT) syndrome 

that is characterised by parathyroid tumors, ossifying jaw fibromas, renal 

tumors and uterine neoplasms (120), have been reported in two unrelated 

patients who had an initial diagnosis of MEN1, but upon genetic analysis were 

shown to have CDC73 mutation (99, 100); one had primary 

hyperparathyroidism and a prolactinoma (100), and the other had acromegaly, 

primary hyperparathyroidism and a pancreatic NET (100). MEN1 phenocopies 

associated with CASR mutations, which usually  give rise to familial 

hypocalciuric hypercalcaemia type 1 (FHH1) and FIHP (121),  have been 

reported in two unrelated patients; one had acromegaly and hypercalcaemia 

possibly due to primary hyperparathyroidism (99), and the other  had a NET 

hepatic metastasis from an unknown primary tumor,  and primary 

hyperparathyroidism (102). Thus, these patients represent MEN1 phenocopies 

as they have developed MEN1 tumor manifestations on a background of 

hereditary disorders associated with parathyroid tumors. MEN1 phenocopy 
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associated with an AIP mutation, which usually  gives rise to familial isolated 

pituitary adenomas (FIPA), has been reported in a patient with acromegaly and 

primary hyperparathyroidism, thereby illustrating the occurrence of a MEN1 

phenocopy in which parathyroid tumor development arose on a background of 

a hereditary disorder associated with pituitary adenomas (3, 113). These 

findings indicate that if a patient is diagnosed with MEN1 based on the 

combined occurrence of primary hyperparathyroidism, and a pituitary tumor 

then testing for MEN1, RET, CDKN1B, CDKN2B, CDKN2C, CDKN1A, 

CDC73, CASR, or AIP mutations would be advisable to determine if the patient 

has MEN1, or could potentially have MEN2, MEN4,  HPT-JT, FHH, FIHP or FIPA. 

In addition, the prevalence of both primary hyperparathyroidism and pituitary 

adenomas is rapidly rising, with primary hyperparathyroidism increasing from 

76 to 233 per 100,000 women, and 30 to 85 per 100,000 men over the past 

two decades (122), and pituitary tumors identified in over 25% of unselected 

autopsies and 20% of the population undergoing intracranial imaging (123). 

Therefore, the potential of patients to develop co-incidental parathyroid and 

pituitary tumors, and thus meeting the MEN1 clinical criteria is also increasing. 

This again highlights the need for detailed germline genetic testing, as well as 

familial investigation, of MEN1 patients (112).  
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Cohorts of patients who have MEN1 like-syndrome but tested negative 

for MEN1, CDKN1A, CDKN1B, CDKN2B, CDKN2C, CDC73, CASR, RET and AIP 

mutations have also been reported (100, 102). It is possible that these patients 

may have mutations in non-coding regions of the MEN1 gene that affect menin 

expression, for example in promotor or enhance regions. Sequencing of cDNA 

may therefore be of benefit to identify, for example splicing changes.  It is, 

however, also probable that additional yet unreported genes are involved in 

the pathogenesis of MEN1 phenocopies. To identify novel MEN causing genes 

will likely require genetic analysis of large cohorts of patients (102). This is 

likely because novel genes will be occurring in less than 20% of clinically 

diagnosed MEN1 patients. Thus, in summary the clinical course of patients who 

are MEN1 mutation negative differs to that of MEN1 mutation positive 

patients. Currently, genetic testing for genes including CDKN1A, CDKN1B, 

CDKN2B, CDKN2C, CDC73, CASR, RET, and AIP may highlight MEN1 

phenocopies, however these still account for only ~5-10% of the MEN1 

mutation negative cases. Therefore, future studies identifying novel genes will 

be important for determining the treatment and screening of MEN1 mutation 

negative MEN1 patients.  

  

  

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article/doi/10.1210/endrev/bnaa031/6009070 by U

niversity of N
ew

 England user on 29 N
ovem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

CLINICAL PRESENTATION OF MEN1 IN CHILDREN AND ADOLESCENTS   

   Approximately 12-17% of MEN1 patients are diagnosed with the disease 

in the first two decades of life (124-126). Clinical evident disease appears 

uncommon before adolescence, with consensus guidelines currently 

recommending phenotype screening of confirmed MEN1 carriers commencing 

by 5 years of age (3).  Even if penetrance of MEN1 mutations is age dependent 

clinical manifestations of MEN1 have occurred in some patients by the age of 5 

years. Therefore, clinical guidelines suggest the performance of genetic testing 

in asymptomatic relatives of MEN1 mutated patients as soon as possible, 

certainly within the first decade of life.   MEN1 germline mutation la analysis 

should be recommended in individuals presenting at an early age with a single, 

apparently sporadic MEN1-associated tumor (3).   

   Early manifestation of the classical MEN1 endocrine disorders in young 

patients can be the first manifestation of the syndrome and thus, their 

recognition may help not only in the close monitoring of patient’s treatment, 

but also direct the screening for other endocrinopathies.  

   The seminal paper on the role of germline MEN1 mutation causing 

pituitary adenomas in children and adolescents described PRL-secreting 

tumors as the most frequent manifestation, with GH excess being rare and 
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possibly related to GHRH secreting pancreatic tumor (127). The age at 

diagnosis of MEN1 syndrome varies according to the clinical, familial or genetic 

diagnosis. Clinically a functional tumor is diagnosed much earlier than a non-

functional tumor (128). The familial diagnosis allows the recognition of gene 

carriers at birth with the possibility to follow the natural history of the disease 

in a given patient. Future tests based on wide genome analysis will allow the 

identification of gene mutations even in sporadic asymptomatic 

carriers.  Diagnosis in the children has to do with the presymptomatic 

screening of at-risk patients which allows for earlier detection and 

intervention, with a resultant decrease in mortality and morbidity associated 

with these tumors (129). Presymptomatic screening recommendations for 

MEN1 management have been based on the youngest age at which disease 

manifestations have been reported and this cannot be considered a precise 

optimal timing. 

1. Diagnosis and Therapy 

1a. Primary hyperparathyroidism   

   Primary hyperparathyroidism (PHPT) is the earliest laboratory and/or 

clinical manifestation in patients with MEN1. The youngest reported cases 

have been reported at the age of 4 years and with a pediatric prevalence of 
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75% in a study evaluating 122 patients with MEN1 aged <21 years (125). These 

data were confirmed in another cohort with a prevalence of 58% for (130). 

PHPT is mainly asymptomatic in young patients with MEN1 (125, 130), even 

though a higher incidence of rickets and osteomalacia was demonstrated  in 

the pediatric population with PHPT than in adult patients (131). A single case of 

a severe complication of MEN1-associated PHPT has been described: a 14 

years old boy with MEN1 experiencing a stroke in the absence of other 

recognized causes, but with only PHPT (132). 

   Development of hypercalcemia during surveillance is suggestive of PHPT 

and should be followed-up by the simultaneous measurement of calcium and 

intact parathyroid hormone. Diagnostic management is usually the same as for 

adult patients. 

   The therapy for PHPT in MEN1 is surgical parathyroidectomy.  In adult 

patients this should not be postponed because bone complications are more 

severe in MEN1-associated PHPT than in its sporadic counterpart (133). The 

published data with 19 MEN1 adolescents developing PHPT before the age of 

20 years and undergoing parathyroidectomy before the age of 25 years to 

control calcemia support the use of surgery to avoid PHPT complications, even 

though two patients developed post surgical hypoparathyroidism (134). 

Subtotal parathyroidectomy is always recommended.       
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Treatment with the calcimimetic cinacalcet has been demonstrated to be 

successful in children affected by neonatal severe hyperparathyroidism (135), 

but reports on the response to monotherapy with cinacalcet in children with 

MEN1 are not available. 

1b. Pituitary tumors   

   Pituitary adenomas are the second in frequency in young MEN1 patients 

(>30%) with an age at diagnosis as early as 10 years  (125, 130). MEN1- 

associated pituitary adenomas are known to be more frequent in females than 

males (124). Conversely in children macroadenomas and severity of symptoms 

are prevalent in young males rather than young females (124, 125, 130, 136-

140). Similar to adults prolactinomas are the most frequent MEN1-associated 

pituitary tumors in children (3, 125,130). Pituitary-associated Cushing’s disease 

is more frequent than Cushing’s syndrome caused by adrenal lesions in 

pediatric MEN1 patients (125, 137, 141). Pituitary tumors have been described 

in several publications as aggressive, since they are larger than in sporadic 

cases and may be multiple at the time of diagnosis with reduced response to 

standard therapy (124). A case of a boy with MEN1 boy who developed a TSH-

secreting pituitary carcinoma at age 19 years was reported in the literature 

(142). The aggressive behavior of MEN1-associated pituitary tumors is an 

important reason for anticipating the screening at the age of 5 years (3).   
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   The treatment of pituitary tumors in young patients should follow the 

standard therapy for the sporadic forms of the disease. For 

macroprolactinomas the presence of MEN1 mutation was independently 

associated with resistance to dopamine therapy in up to 16% of patients (143). 

1c. Neuroendocrine  tumors 

   Neuroendocrine tumors (NETs) are the rarest lesion in young MEN1 

patients, with the youngest patient diagnosed at 8 years of age 

(125, 130, 144).   Interestingly, the systematic use of endoscopic ultrasound in 

young MEN1 patients has provided  evidence for the a prevalence of clinically 

occult (non-functioning) pNETs in up to 42%  of  pediatric cases (145). 

Differently than adults, gastrinomas are rare in children with MEN1, but when 

present can be very aggressive (125, 130). The parents of MEN1 children are 

educated to recognize symptoms related to Zollinger-Ellison syndrome (ZES). 

Moreover, MEN1-associated insulinoma, the most frequent neuroendocrine 

tumors in the juvenile MEN1 French cohort, is very precocious in onset and its 

diagnosis is delayed (125). A possible explantation of this delay is the 

overlapping of symptoms related to hypoglycemia and epilepsy, a much less 

rare disorder in infancy. Finally, for the few young MEN1 patients affected by 

thymic NETs the disease was lethal (125, 146). Altogether these are important 
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elements for deciding when to start clinical surveillance in young MEN1 

patients. 

   The duodeno-pancreatic disease is a major cause of mortality in adult 

patients with MEN1, but although rare is also present in the pediatric and 

young adult age groups and thus requires active surveillance. Conditions like 

insulinoma are cured by surgery- avoiding severe hypoglycemia and brain 

damage (147). 

2. General Recommedations  

   The different studies carried out after the publication of the clinical 

guidelines in 2012 demonstrate that mortality is rare in children and young 

adults, while morbidity is not uncommon for the manifestation of PHPT, DP-

NETs, and pituitary disease. MEN1-associated endocrine tumors in children 

and adolescents appear to have clinical manifestations that differ from those 

observed in the adults with increased severity.  Identification of the endocrine 

tumors at an earlier stage in children could potentially reduce morbidity in 

MEN1 as observed in other hereditary tumor syndromes. It is important to 

remember that any decision related to an active early tumor surveillance and 

intervention should take into account patient preference and ascertain any 

financial and psychological burden. An important consideration in supporting 
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and managing these younger patients is a risk assessment of the likelihood of 

aggressive or incidental functional disease versus the burden of frequent 

medical surveillance. 

   

ADVERSE FERTILITY, PREGNANCY OUTCOMES AND IMPACT OF PARENTAL 

MEN1   

   Women affected by MEN1 typically show classical endocrinopathies 

during their reproductive years. Some of these endocrine manifestations are 

known to potentially affect reproductive health. In a report describing a family 

genotyped by linkage analysis with two of the siblings found to be 

homozygotes, homozygosity did not result in a more severe phenotype, while 

resulting in unexplained infertility possibly at the time of conception 

(148). Surprisingly, until very recently there was little published research 

regarding the impact of MEN1 on pregnancy and a corresponding lack of data 

to guide antenatal management, except for a few case reports. There are, 

however, case reports that outline the management of PHPT and sporadic 

pituitary tumors and DP-NETs in pregnancy in MEN1. Data concerning the 

impact of MEN1 on fertility and pregnancy is based on the accumulated 
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experience with more common sporadic single organ dysfunction, such as 

isolated PHPT, pituitary tumors and NETs. 

1. Adverse Fertility   

  Prolactinoma, that represents 70% of pituitary adenomas occurring 

before 21 years of age (125, 126), is recognized to reduce fertility, while PHPT 

does not affect  fertility per se  (149, 150). In a historical population-based 

analysis in a multigenerational kindred in Tasmania, named Tasman 1 MEN1 

kindred, fertility and pregnancy outcomes were analyzed, with no adverse 

impact of MEN1 on patient fertility and stillbirth (151). The most likely 

explanation for this finding is the lack of symptomatology in parathyroid and 

pituitary tumors commonly occurring before 20 years of age in MEN1 (125). 

Indeed, in the Tasman population-based analysis the majority of pregnancies 

should have occurred in the context of subclinical pituitary or parathyroid 

disease. Similarly, in a Finnish MEN1 kindred the reproductive fitness was not 

affected by the disease (152). The analysis of the large Tasman kindred made 

possible also to exclude any adverse impact of the maternal MEN1 status on 

offspring gender or offspring MEN1 (151).  In a recent retrospective Australian 

analysis that evaluated 96 pregnancies relating to 26 women within the 

Tasman 1 cohort, emergency cesarean deliveries and miscarriage rate were 

not significantly different in MEN1-positive women (153). 
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   Overall the limited published data suggest no adverse impact of MEN1 

on patient fertility; however pituitary disease in MEN1 could impair 

reproductive potential. Therefore, MEN1 patients should be informed about 

the need of a careful antenatal investigation of any potential problem, with 

target intervention only in selected patients.   

2. Pregnancy outcomes   

   Surprisingly, there is little published research on the impact of MEN1 on 

pregnancy outcomes, making it difficult to guide doctors and patients on the 

management of the pregnant MEN1 patient. Case reports published offer a 

limited experience to conclude that endocrine disorders in MEN1 pregnant 

women are variable with a variable expression of maternofetal complications 

(154, 155).   

   Outcomes of pregnancy in MEN1 women could be weighted indirectly 

on the basis of the limited publications reporting on the impact of sporadic 

single organ endocrinopathies. Complications of PHPT in pregnancy is 

associated with a high incidence of maternal, fetal and neonatal complications 

directly proportionate to the degree of maternal calcium levels (156). Maternal 

complications include kidney stones, pancreatitis, acute hypercalcemia, 

hypertensive crisis, cardiac arrhythmias, pre-eclampsia, and miscarriage (153, 
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156). PHPT in pregnancy can cause - intrauterine growth restriction, preterm 

delivery, intrauterine fetal death and neonatal (low birth weight, 

hypocalcemia) (157). Adverse outcomes appear to relate to the degree of 

hypercalcemia rather than to the presence of PHPT (149, 150). 

   Calcemia needs to be monitored during pregnancy in MEN1 women and 

kept in the mild-moderate levels. Parathyroidectomy is usually avoided when 

possible and when necessary is timed in the second trimester. Neonates 

should be monitored for hypocalcemia. 

   Nonparathyroid MEN1-related endocrinopathies occurr less frequently 

during pregnancy (158). Pituitary disease was the second most common 

endocrinopathy in MEN1 pregnant women, with a prevalence of prolactinomas 

and nonfunctioning adenomas, and maternal and neonatal consequences (I.e. 

hypertension and low birthweight) (153, 158). 

   Gestational diabetes mellitus was found at a higher rate in MEN1 

pregnant women (156) as a consequence of a high prevalence of hypoglycemia 

in infants with an MEN1-positive mother. Therefore, blood glucose should be 

actively tested in MEN1 pregnant women and in their offsprings. 
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3. Impact of parental MEN1 

   In a large survey conducted in the Tasman 1 cohort, parental MEN1 was 

shown to be associated with a high vulnerability to of neonates postpartum 

and this is not fully explained by the most common metabolic alteration, 

hypercalcemia (158). Main neonatal complications encompassed lower birth 

weight, longer stay and admission to a higher dependency nursery, 

hypoglycemia and more rarely hypocalcemia (158). Children with an MEN1 

parent have an elevated risk of postnatal mortality and was not solely 

attributable to offsprings of MEN1 mothers, but was also present in offsprings 

of MEN1 fathers (158). Infections appear to be an important cause of mortality 

in these children and the potential for a role of menin in the control of the 

immune system has been proposed (158). 

GENETIC AND CLINICAL SIGNATURES OF FUNCTIONING AND NON- 

FUNCTIONING DUODENO-PANCREATIC NEURO-ENDOCRINE TUMORS IN 

MEN1 AND THEIR IMPACTS IN DIAGNOSIS AND THERAPY OF THESE 

NEOPLASIA 

    In MEN1 patients, duodeno-pancreatic neuroendocrine tumors (DP-

NETs) are highly prevalent and nowadays the major cause of premature MEN1-

related death because of metastasized disease (124, 159, 160). As early as in 
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the first decade of life, a few MEN1 patients have been reported to develop 

DP-NETs (125). At the age of 50 years, approximately 50% of patients suffer or 

have suffered from a DP-NET rising to a prevalence of almost 90% at an age 

higher than 80 years (108). Within MEN1 families, there are some indications 

that tumors arise at an earlier age in patients within successive generations 

(161). During the lives of patients, multiple functioning as well as non-

functioning tumors occur throughout the pancreas which further complicates 

the management for individual patients (162). Therefore, MEN1 carriers are 

intensively screened pre-symptomatically from a young age to enable timely 

interventions for preventing morbidity and metastasized disease (3). Insights 

into the clinical and genetic signatures of the different types of DP-NETs and 

the impact on the management of patients is very important for an adequate 

management of patients. Because of the complexity, and for well informed and 

up-to-date decision making tailored to the individual patients needs, MEN1 

care within an experienced multidisciplinary team dedicated to collaborative 

research is of utmost importance (163). 

   Functioning (hormone producing) DP-NETs are often diagnosed because 

of elevation of plasma biochemical markers and the endocrine syndrome that 

is caused by the hormone produced by the NET. The management of 

functioning DP-NETs entails both the treatment of the functional syndrome 
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caused by hormonal hypersecretion as well as mitigating the oncologic risk of 

distant metastases, while minimizing treatment related morbidity and 

mortality. This is particularly challenging in gastrinoma, the most frequently 

occuring functioning DP-NETs in MEN1. Gastrinomas occur in approximately 

30% of patients with MEN1 (110, 164-168). These tumors produce gastrin 

which, if unopposed, leads to acid hypersecretion of the stomach with 

subsequent severe peptic ulceration and gastro-intestinal bleeding, the so 

called ZES (169). Gastrinomas in MEN1 are often small and in most cases 

located in the submucosa of the duodenum (170, 171). Proton pump inhibitors 

are effective for the treatment of the peptic ulcer disease and therefore 

suggested for the treatment of the majority of patients with gastrinomas (3, 

172). The prognosis of MEN1-related gastrinomas is hard to interpret because 

there is a wide variation among studies with regard to diagnosis and treatment 

(173-178). In a French cohort study, gastrinomas were associatied with an 

increased risk of distant metastases irrespective of tumor size. In this study 

metastasized gastrinomas were not significantly associated with the survival of 

patients (160). However, in a subgroup of MEN1 patients, gastrinomas 

appeared to have an aggressive course of disease with distant metastases and 

early death. In this study aggressive tumor behavior was associated with larger 

tumor size and higher gastrin levels (173). In a recent population-based study 
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the life expectancy of MEN1 patients with a gastrinoma was shown to be 

reduced. Also, in this study fasting serum gastrin levels were associated with 

overall survival and could therefore provide a justification for selecting those 

patients who might benefit from surgery (179). However, since surgery for 

gastrinomas is often extensive, not always curative and is associated with 

morbidity, controversies exist about indication and timing (3, 172, 180).  

Interestingly, past Helicobacter pylori exposure was associated with 

increased prevalence and severity of hypergastrinemia in MEN1 patients (181). 

Based on these findings, routine Helicobacter pylori serotyping is suggested in 

all MEN1 patients, with eradication therapy for those who demonstrate 

evidence of active infection. 

The most frequently occurring functioning pNETs in patients with MEN1 

are insulinomas with an incidence of 10-15% (33, 108, 182). Insulinomas lead 

to symptomatic and potentially life-threatening hypoglycaemia. Patients are 

often young and localization of the insulinoma in the presence of multiple 

other pNETs is difficult. Therefore, deciding upon the type and extent of 

surgery is complex (183). Although only studied in six MEN1 patients with 

evidence for an insulinoma, the recently developed 68Ga-Exendin-4 PET-CT 

scan appears to be of help for guiding selective pancreas surgery (184). This 

functional imaging technique makes use of the glucagon like peptide-1 
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receptor combined with Exendin-4, a synthetic GLP-1 analogue. Although 

different surgical strategies are followed, resection of MEN1 related 

insulinoma is often effective but depending on the individual patients‟ 

characteristics (185). The same dilemma applies to the even more seldom 

occurring functioning pNETs such as glucagonoma, VIPoma and GHRH-oma 

which also lead to symptoms because of overproduction of hormones and can 

have a poor prognosis (186). 

   Non-functioning pNETs (NF-pNET) are the most commonly occurring 

pNETs in patients with MEN1 (133, 187, 188). Therefore, the clinical practice 

guidelines advice screening for new tumors and monitoring of already existing 

tumors by plasma biochemical tumor markers combined with radiological 

examinations or endoscopic ultrasound (EUS) (3). Based on the recent 

literature, the annual use of tumor markers can no longer be recommended 

for diagnosing NF-pNET (189-191). The preferred radiological examination is 

the MRI scan, not only because of the lower risk of cumulative ionizing 

radiation exposure but also because of the better sensitivity compared with CT 

scans (189). Endoscopic ultrasound is the most sensitive imaging modality, 

however, it is operator dependent and invasive. Functional imaging using 68Ga-

DOTA PET-CT seems to be most useful for the detection of metastasis of 

prevalent NF-pNET(191). Up to now, there is no agreement on the optimal 
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follow-up scheme and the timing of surgical intervention which is the only 

curative option. Given the paucity of high-quality evidence, appraisal of the 

existing literature still leads to different opinions on the timing and extent of 

interventions for surgical interventions (192). Within the multidisciplinary 

teams taking care for patients with MEN1 the management of NF-pNETs is one 

of the greatest dilemmas. On the one hand, surgery for NF-pNET often leads to 

major short- and long-term complications which should be taken into account 

in the decision making before proceeding to surgery (193). On the other hand, 

up to now, surgery is the only curative option for NF-pNET. In one small, non-

randomized and non-blinded study the somatostatin 

analogue lanreotide appeared to improve the progression free survival of 

patients with non-metastatic NF-pNET <2 cm (194). However, before this can 

be translated to clinical practice more robust evidence is needed. 

   In MEN1-related NF-pNETs, well informed decision making towards an 

optimal follow-up and treatment plan requires insight in natural course and 

prognostic factors (163). (NF-pNET was scarce and often at the risk of bias 

(195). This emphasizes the caution that is needed, before applying these 

scientific findings to clinical practice.  

   In the follow-up of patients, the size of pNETs is often used for deciding 

upon the follow-up scheme and when to proceed to surgery. From the 
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available studies it can be concluded that a larger tumor size is associated with 

a higher chance for metastases and a worse survival (195). In addition, from 

the studies comparing the effect of surgical resection with a watchful waiting 

strategy, it can be concluded that patients with tumors smaller than 2 cm have 

an overall low absolute risk for metastases and death (196-198). Therefore, a 

watchful waiting strategy for those patients, seems to be oncologically safe 

with surgery not lowering the risk for metastases enough when outweighing 

the risk for complications. 

   In daily clinical practice tumor growth over time is often used as a 

predictor for the course of the disease in individual patients. In the 

aforementioned review, two studies assessing the growth of NF-pNETs were 

identified (195, 199, 200). Overall, from the current available literature it can 

be concluded that NF-pNETs smaller than 2 cm have a generally stable course 

and a watch-and-wait strategy appears to be safe in those patients (195). 

However, metastasis of NF-pNETs smaller than 2 cm do seldom occur and 

reliable predictors for the course of disease in individual patients are urgently 

needed to enable decision making for individual patients (163). 

   Several studies were undertaken in MEN 1 patients assessing the 

prognostic value of tumor tissue-based markers as assessed by the 

pathological examination of surgically resected NF-pNETs (85, 201-203). From 
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research in non-MEN 1 related NETs it is clear that tumors with a higher WHO 

grade according to the mitotic index, and higher Ki67 labeling index are 

associated with a worse survival of patients (204). In only one study, tumor 

grade was assessed as a predictor for survival of MEN1 patients who were 

operated because of a NF-pNET (201). A higher tumor grade as assessed by 

mitotic index, in contrast to Ki 67 labeling index, was associated with a higher 

risk of liver metastasis. These patients were generally operated because of 

tumors larger than 2 cm. 

   Epigenetic changes contribute to tumor development. This mechanism 

is potentially reversible and might therefore be a new therapeutic target. 

Promotor hypermethylation is reported in sporadically occurring pNETs (205). 

In MEN1-related pNET, the association between promotor hypermethylation 

expressed as cumulative methylation index and clinical outcome was also 

studied. Patients with distant metastasis of NF-pNET appeared to have a higher 

cumulative methylation index (202).  

   A study of Cejas et al, showed that within the group of NF-pNETs a 

distinction can be made between alpha cell tumors expressing the 

transcription factor ARX and beta cell tumors expressing the transcription 

factor PDX1 (85). In this study, both transcription factors were assessed by 

immunohistochemistry. The occurrence of distant metastasis after surgical 
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resection of MEN1-related NF-pNETs that were often larger than 2 cm was 

strongly associated with the expression of ARX and not PDX1. Interestingly, 

distant metastasis almost exclusively occurred in cases with alternative 

lengthening of telomeres (ALT) within this subgroup of tumors expressing ARX 

positivity. 

Of the currently available markers the WHO grade of tumors can be used 

to assess the risk for metastasis. Since grade 2 tumors are at a higher risk for 

metastasis, after resection of these tumors patients should be carefully 

followed. In addition, tissue-based prognostic factors such as the transcription 

factors ARX and PDX1 can be assessed by immunohistochemistry. 

Furthermore, ALT can be an important addition as a biomarker for predicting 

the risk for metastasis in individual patients with tumors expressing ARX. New 

biomarkers such as multi-analyte circulating transciptomas, tissue-based 

molecular factors and image-based markers are needed for predicting the 

course of tumors in individual MEN1 patients (195). In the coming decade the 

goals for MEN1-related DP-NETs should be to attain the ability to predict 

aggressive behaviour early on in the disease course and develop new therapies 

to prevent metastastic disease. Where patients with sporadic pNET often 

present with metastastic disease and research is aimed at devising novel 

treatment options for advanced disease and prediction of treatment response, 
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in MEN1 there is a window of opportunity to prevent metastastic disease. 

Since MEN1 is a rare condition and a high quality of research is urgently 

needed, patients should be treated in centers of expertise, in which 

multidisciplinary dedicated care is combined with collaborative research to 

search for new insights into more individualized care for patients (163). 

  

NOVELTIES IN THE SURGICAL APPROACHES IN MEN1 ENDOCRINE TUMORS 

Surgical management of MEN1 is complex and controversial, given the 

multifocal and multiglandular nature of the disease and the high risk of tumor 

recurrence even after surgical intervention. Establishing the diagnosis of MEN1 

before making surgical decisions and referring affected individuals to a surgeon 

with experience in treating MEN1 can be critical in preventing unnecessary 

operations or inappropriate surgical approaches. 

1. Treatment for parathyroid tumors 

The timing and the extent of surgery for MEN1 PHPT remains 

controversial. Once surgical intervention is necessary, subtotal 

parathyroidectomy (removal of 3–3.5 glands) is often suggested as the initial 

treatment (206). If 3.5 or more glands are removed, the rate of persistent 
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disease is 5% to 6%. Preoperative imaging is not sufficiently reliable to justify 

unilateral exploration, with 86% of patients having enlarged contralateral 

parathyroid tumors that were missed. Fifty percent of the remaining patients 

had the largest parathyroid gland identified intraoperatively on the 

contralateral side (207). Reoperation is often necessary as hyperplastic 

parathyroid tissue can be stimulated to grow from embryologic locations along 

its path along the neck and mediastinum (206). Total parathyroidectomy with 

autotransplantation of parathyroid tissue to the forearm risks the devastating 

sequelae of rendering the patient hypoparathyroid (207). Concomitant 

transcervical thymectomy decreases the rate of recurrence and theoretically 

lessens the risk of thymic neuro-endocrine tumor development (which can 

occur in males) and is suggested at the initial operation (208). The standard 

cervical exploration remains the procedure of choice. At the initial operation, 

all 4 parathyroid glands are identified. Occasionally supernumerary parathyroid 

tissue will be identified. The size of the parathyroid glands can be different and 

gland weight can vary. Factor for choice of remnant creation include relative 

macroscopic normality, the accessibility of the preserved gland for subsequent 

re-operation should also be considered (inferior parathyroid may be more 

suitable lying more anteriorly, away from the recurrent laryngeal nerve) and 

vascular viability. The authors choose the remnant early in the exploration in 
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order to confirm viability before resection of the other glands. A remnant 

approximately twice the size of a normal gland (60mg) is ideal. Robotic and 

videoscopic techniques have been described but the resource allocation and 

value have not been proven to be better.  However, for recurrent disease or 

disease noted within the mediastinum which can not be accessed through the 

neck, video-assisted thorascopic approaches are useful. 

2. Treatment for DP-NETs 

The timing and extent of surgery for DP-NETs are controversial and 

depend on many factors, including severity of symptoms, extent of disease, 

functional component, location and necessity of simple enucleation, subtotal 

or total pancreatectomy, and pancreaticoduodenectomy (Whipple procedure). 

Pancreatoduodenectomy has been associated with higher cure rates and 

improved overall survival, they also have higher rates of postoperative 

complications and long-term morbidity (209). The risks and benefits should be 

carefully considered, and surgical decisions should be made on a case-by-case 

basis. With regard to open or minimally-invasive (laparoscopic or robotic) 

approaches, minimally-invasive pancreatectomy appears to be safe and 

associated with a shorter length of stay and fewer complications in selected 

patients (210). 
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Minimally invasive surgery techniques have remarkably evolved over the 

past few decades in the field of surgical oncology, including minimally-invasive 

pancreatectomy. Because of the relative simplicity of distal pancreatectomy 

(DP), minimally-invasive DP has been widely accepted and increasingly 

performed with reported safety (211). Large retrospective analyses as well as 

recent systematic reviews have shown that minimally invasive DP resulted in 

less blood loss and shorter hospital stays compared with open DP, and there 

were no significant differences in incidence rates of short-term complications, 

including postoperative pancreatic fistula, or in mortality rates or complete 

gross tumor resection rates between the two techniques (212, 213).   Alfieri et 

al. reported a large Italian multicenter comparative study, comparing 

laparoscopic and robotic DP for pNETs. The study included a total of 181 

patients (96 robotic and 85 laparoscopic DP), and reported that both 

approaches are safe and efficacious for pNETs treatment, with similar 

conversion rate, postoperative morbidity, and pancreatic fistula rate between 

groups (214). Robotic approach was reported to have a higher spleen 

preservation rate and lower bolood loss, as compared with laparoscopic 

pancreaticoduodenectomy (PD) is technically demanding surgical procedure, 

associated with high mortality and morbidity rates. Techniques for minimally 
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invasive PD have continued to evolve (215, 216), most significantly with the 

emergence of the robotic surgery platform (217). 

The LEOPARD-2 trial was conducted in The Netherlands. This multicenter 

national study was terminated prematurely after accrual of 99 patients owing 

to safety concerns, with reported 10% 90-day mortality in the laparoscopic 

group compared with 2% in the open group (218). The results of the LEOPARD-

2 trial clearly demonstrate the safety concerns of laparoscopic PD. Augmented 

surgical dexterity, particularly the wide range of instrument articulation 

provided by the robotic surgery platform, may improve the safety and 

generalizability of robotic PD and several retrospective cohort studies have 

reported promising results (219). The accumulating reports support the use of 

robotic minimally invasive PD (Fig. 6); however, prospective randomized 

controlled trials are warranted to determine the safety and non-inferior 

oncologic outcomes of robotic PD compared with open PD for patients with 

pNETs. 

Recent advances in interventional gastroenterology have allowed for new 

treatments as emerging adjuncts to standard care in patients with pNETs. 

Multiple applications of different techniques have been demonstrated to 

locally treat pNETs. The studies are small and none have had large cohorts of 

MEN1 patients but several deserve mention. Local therapies include ethanol 
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ablation using 1-2 or more cycles of ethanol lavage at various concentrations 

for local pNETs treatment (220, 221). In 2015, Park et al (222) published results 

from a series of 11 patients with fourteen lesions. Ten patients had non-

functional NETs and two patients had symptomatic insulinomas (one with 

three lesions). Endoscopic ethanol ablation was performed with 98% ethanol 

over multiple sessions, patients were followed for 1 year. Post-procedure 

complete resolution was seen in 8/13 lesions (61.5%); both insulinoma patients 

were asymptomatic. Three patients had mild pancreatitis and required stent 

placement for PD stricture. All three patients with acute pancreatitis had >2 mL 

ethanol lavage in a single procedure. Endoscopic US guided brachytherapy, 

photodynamic therapy (223), laser ablation therapy (224), “Cyberknife” 

frameless radiosurgery, regarded as image guided radiotherapy have also been 

described as emerging technologies. 

Radiofrequency ablation (RFA) is perhaps the most common endoscopic 

treatment considered safe. The RFA technique emits thermal energy resulting 

in coagulative necrosis of the surrounding tissue. Recent studies have shown 

promising results with RFA in patients with unresectable PC in open, 

laparoscopic, or percutaneous setting. EUS-guided RFA (EUS-RFA) allows real-

time imaging of pancreatic tumors and may result in safe tissue ablation. In 

2015, Armellini et al (225) demonstrated the safety and feasibility of EUS-RFA 
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in a patient with pNET who refused surgery. Post-ablation, the patient 

remained asymptomatic and the CT after one month showed complete 

radiological ablation – suggesting RFA can be a potential alternative to surgery 

in select cases. Lakhatakia et al. (226) and Waung et al. (227) reported that 

EUS-RFA used in 4 cases of insulinoma resulted in complete clinical resolution 

in all patients (complete morphological resolution in two patients) following 

EUS-RFA with 12 and 10 months follow up, respectively. 

Benefits of affecting the systemic immunomodulatory response have also 

been studied with RFA of pancreas lesions. The initial results assessing a 

systemic response from radio frequency ablation (RFA) have proved feasibility 

for locally advanced pancreatic tumors (not specifically pNETs) with regard to 

adding the benefit of evidence of immunomodulation. One study group 

observed a general activation of adaptive response decrease of 

immunosuppression. The plausibility of this occurring with pNETs needs 

further study (228).  

3. Treatment of NF-pNETs 

Approximately 50% of individuals with MEN1 will develop NF-pNETs. 

These are often identified incidentally during assessment and exploration for 

functioning tumors. As with gastrinomas, the metastatic rate is correlated with 
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larger tumor size. Tumors smaller than 1.5 cm are not likely to have lymph 

node metastases (229), although the presence of metastatic disease has been 

associated with earlier age at death than in those without DP- NETs (127). 

4. Treatment of pituitary tumors 

Medical therapy to suppress hypersecretion is often the first line of 

therapy for MEN1-associated pituitary tumors. Surgery is often necessary for 

patients who are resistant to this treatment. The indications for surgical 

removal of pituitary tumors associated with MEN1 are similar to those for non-

syndromic tumors. They include hormone hypersecretion unresponsive to 

medical therapy, compression of the optic nerves and/or chiasm endangering 

vision, and uncertainty of diagnosis requiring biopsy. Adenomas that secrete 

growth hormone (causing acromegaly) or ACTH (causing Cushing‟s disease) are 

typically addressed surgically, as medical strategies for those tumor types tend 

to palliate rather than cure. Prolactinomas are usually treated with dopamine 

agonists, with surgery reserved for patients in whom side effects limit their 

ability to take those medications consistently over the long term, or in whom 

they are incompletely effective in achieving the dual goals of hormone 

normalization and control of tumor growth. In one series of 136 patients, 

medical therapy was successful in approximately one-half of patients with 

secreting tumors (49 of 116, 42%), and successful suppression was correlated 
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with smaller tumor size (230). For the nonfunctional adenomas that form the 

majority of pituitary tumors seen in MEN1, surgery is the main method for 

tumor control when such control is needed. Small nonfunctional adenomas 

(microadenomas, < 10 mm) are usually watched, and intervention is only 

necessary if they grow close enough to the optic chiasm to warrant removal. 

The pituitary tumor should be given priority for treatment in patients with 

MEN1 only in patients with pituitary apoplexy (hemorrhage into an adenoma 

causing loss of vision and/or hormonal collapse) or who present with 

significant chiasmal compression and risk of blindness. 

Most pituitary surgery today is done by the endonasal transsphenoidal 

approach, which can be done with visualization of the sphenoid sinus and sella 

by either microscope or endoscope. The microscope confers the advantage of 

binocular vision with depth of field; the endoscope provides a wider field of 

view. Both techniques are minimally invasive in nature, and such surgery 

typically requires short postoperative stays of 1-3 days in hospital. Pituitary 

tumors are typically soft and friable, and can be removed selectively with 

specially designed curettes that protect the adjacent normal gland, and allow 

its preservation. Although such removals are typically piecemeal, in the past 

decade en bloc resection has become possible due to the recognition that 

tumors > 2 mm are surrounded by a pseudocapsule that provides a plane for 
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the surgeon (231). For ACTH- and GH+ tumors in particular, en bloc resection 

provides higher rates of durable remission. Only 1-2% of patients will need 

craniotomy, which carries more risk of neurological injury and is reserved for 

those with tumors that extend laterally from the sella, encase suprasellar 

arteries, invade the skull base, or have a firm consistency that makes 

transsphenoidal removal too difficult and less safe. 

Rates of success in surgical removal of MEN1-associated adenomas are 

similar to those seen in large general series of pituitary tumors in the general 

population. Although pituitary tumors in MEN1 patients have been reported as 

more invasive or aggressive than in those without MEN1, one recent surgical 

series showed that 82% of the tumors were confined to the sella (Knosp grades 

0, 1, and 2), and that rates of remission of hormone hypersecretion and of 

tumor control matched those in patients without MEN1 (232). The lack of 

growth usually seen over time in asymptomatic un-operated microadenomas 

in MEN1 is congruent with those findings (233). Applying general principles of 

pituitary surgery to MEN1-associated adenomas yields excellent control of the 

majority of cases, and that modern techniques (en bloc removal, endoscopic 

assistance) have improved the safety and efficacy of such surgery in this group, 

with significant benefit to such patients. Radiation therapy is reserved for 

patients with incomplete surgical resection (3). 
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PHARMACOLOGICAL THERAPIES IN MEN1 ENDOCRINE TUMORS 

    MEN1 patients often have multiple, multifocal tumors that occur at a 

younger age and have a higher metastatic potential compared to the single 

sporadic counterpart tumors (104, 234). This means that surgery may not be 

possible, especially in the case of pNETs. In addition, with the increase in 

screening and subsequent earlier diagnosis, pharmacological treatments may 

also be administered in order to delay surgical intervention, or to control 

symptoms in functioning tumors (3). Selecting the optimal pharmacological 

therapy is however challenging as clinical trials are often not undertaken in 

MEN1 patients, and instead results are extrapolated from those undertaken in 

patients with a single endocrine tumor, or based on descriptive small cohort 

studies. Nevertheless, there are a number of pharmacological, or medical, 

treatments available for MEN1-associated tumors, which can be broadly 

divided into biotherapies and chemotherapies. 

   Biotherapies are agents that target specific tumor-associated receptors, 

or signaling pathways. For NETs, these predominately include agents that 

target somatostatin receptor (SSTR), mechanistic target of rapamycin (mTOR) 

and receptor tyrosine kinase (RTK) signaling (109). The first line 
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pharmacological treatment for MEN1-associated NETs is commonly a 

somatostatin analogue (SSA)  (235). SSAs bind to SSTRs, a family of G protein-

coupled receptors consisting of SSTR1-5, to activate their downstream 

signaling pathways (236). MEN1-associated NETs can express all 5 SSTRs, 

however they most commonly express SSTR2 and SSTR5 (235, 237). Targeting 

SSTR signaling, which affects anti-secretory and anti-proliferative pathways, is 

effective in facilitating symptom control due to hormone hypersecretion and in 

reducing tumor burden (104, 235, 236). Three SSAs, octreotide, lanreotide and 

pasireotide, have been used clinically for treating NETs. Octreotide and 

lanreotide, which primarily bind to SSTR2, have been demonstrated to have 

efficacy in pituitary and gastroenteropancreatic tumors NETs (238-243). 

Specific evidence for the efficacy of octreotide and lanreotide in MEN1 

patients, has also been demonstrated in: a study of 5 patients with 

gastroenteropancreatic NETs associated with hypergastrinaemia, in whom 3 

months treatment reduced gastrin hypersecretion, and reduced the size of 

liver metastasise (244); a retrospective study of 40 individuals with MEN1-

associated DP-NETs, in whom 12-15 months octreotide treatment resulted in 

tumor response in 10%, and stable disease in 80% of patients (245); in a 

longitudinal open label study of 8 MEN1 patients with <2cm pNETs, in whom 

octreotide treatment resulted in a decrease in GEP hormones and stable 
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disease in 80% of patients (246); and in a prospective observational study, in 

which lanreotide treatment in 23 MEN1 patients with <2cm pNETs significantly 

improved progression free survival (PFS) (204). Pasireotide, which binds to 

SSTRs 1-3 and 5, has been reported to be effective in treating pituitary 

adenomas and pNETs (247-250). Thus, pasireotide has been reported to 

ameliorate hypoglycaemia in insulinoma patients, and to be effective in 

patients who are non-responsive to octreotide and lanreotide (247, 248, 251-

253). However, clinical trials have indicated that the efficacy of pasireotide is 

not significantly superior to octreotide and lanreotide in controlling disease 

progression, and that it is associated with a higher frequency of 

hyperglycaemia that requires medical intervention, thereby limiting its use 

(243, 247, 250). Furthermore, due to the lack of detailed clinical trials in MEN1 

patients the evidence for the use of pasireotide for MEN1-associated tumors is 

currently unclear. SSAs have also been utilised in peptide receptor radionuclide 

therapy (PRRT), whereby they are labelled with a -emitting radionuclide, for 

example 177lutetium (254). One prospective randomized study indicated an 

increase in PFS in PRRT versus SSA alone in metastatic midgut NETs, and 

currently PRRT is recommended as a third line treatment for metastatic midgut 

and pNETs (111). Small retrospective case series have also highlighted the 

benefit of PRRT for metastatic MEN1-associated tumors (255, 256).  
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   In addition to SSTR‟s, other receptors can be targeted for NET 

treatment. For example, NETs are often highly vascularised and express RTKs 

including vascular endothelial growth factor receptor (VEGFR), insulin-like 

growth factor 1 receptor (IGF1R) and platelet derived growth factor receptor 

(PDGFR) (104, 109). The RTK inhibitors sunitinib and pazopanib have been 

reported to increase PFS  from 5.5 to 11.4 months in patients with pNETs 

(107, 257). However, the evidence of the efficacy of these inhibitors in MEN1 

patients is inconclusive, as only one study specifically examined sunitinib 

treatment in MEN1 patients, and no improvement in PFS was observed in the 2 

patients included in the study (258).  In addition to SSTR‟s and RTK‟s, pituitary 

tumors can also express G-protein coupled dopaminergic type 2 (D2) 

receptors, and dopamine agonists (for example cabergoline) are well known to 

lower prolactin levels and decrease tumor size in prolactinomas in non-MEN1 

and MEN1 patients (259).  As well as receptors, molecules targeting 

downstream signaling pathways have also been shown to have efficacy in 

NETs, including inhibitors of mTOR signaling (83). Everolimus, a mTOR inhibitor 

approved for the treatment of advanced NETs, has been demonstrated to 

increase PFS of metastatic pancreatic and lung NET patients from 4 to 11 

months (260, 261). Evidence for everolimus for the treatment of locally 

advanced or metastatic pNETs in MEN1 patients has also been demonstrated, 
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in a retrospective study of 6 patients in which PFS was higher in individuals 

with MEN1 mutations (33.1 months) compared to those with sporadic  non-

MEN1 disease (12.3 months)  (258, 262).  

Finally, surgical removal of the multiple parathyroid tumors that occur in 

patients with MEN1 is the definitive treatment (3). However, in patients in 

whom surgery has either failed or is contraindicated, drugs acting as CaSR 

agonists (calcimimetics, e.g. cinacalcet) may be sucessfully used to treat the 

hypercalcaemia and primary hyperparathyroidism (263). Thus, in 8 patients up 

to 30 mg twice daily cinacalcet treatment has been reported to reduce median 

serum calcium by  0.35 mmol/L, and decrease serum PTH by a median of 5.05 

pmol/L, with no change in urinary calcium; none of the patients demonstrated 

recurrent stone formation (263). 

   Chemotherapies, including alkylating agents, anti-microtubule agents, 

topoisomerase inhibitors, anti-metabolites and cytotoxic antibodies, have been 

used to treat NETs. These are however, reserved for pancreatico, thymic and 

bronchopulmonary NET patients with metastatic disease, high tumor burden, 

or high proliferative index (3, 109). Commonly used agents include the 

alkylating agents streptozocin and temozolomide, the anti-microtubule agent 

docetaxel, the topoisomerase inhibitor doxorubicin, and the anti-metabolites 

capecitabine and gemcitabine, either alone or in combination (3, 109). Thus, 
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for high grade, poorly differentiated pNETs, it has been reported that 

streptozocin-based chemotherapy is effective (109), however the benefits for 

non-pNETs or for MEN1-associated NETs is unclear due to the lack of detailed 

clinical trials in these patients.  

   Over the last few decades the increased knowledge of menin function, 

and the development of robust MEN1 tumor models has led to the preclinical 

evaluation of a number of novel pharmacological therapies specifically 

targeting MEN1-associated tumor pathways. This includes gene replacement 

therapies, epigenetic targeting therapies, Wnt pathway inhibitors, and novel 

mTOR and RTK inhibitors. Furthermore, the use of these and existing 

pharmacological agents have also been evaluated for their efficacy in 

chemoprevention. These preclinical studies are discussed below and shown in 

Figure 7.             

    Menin is a tumor suppressor, and loss of menin expression or function 

results in NET tumor formation. Therefore, MEN1 gene replacement therapy 

has the potential as a therapy for all MEN1-associated tumors. Thus, injection 

of a recombinant non-replicating adenoviral serotype 5 vector (rAd5) 

containing Men1 cDNA under the control of a cytomegalovirus promoter, into 

pituitary tumors of a conventional heterozygous Men1 knockout mouse 

(Men1+/-) resulted in increased menin expression, and decreased proliferation 
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without inducing an immune response (264). Furthermore, systemic delivery of 

a hybrid adeno-associated virus and phage vector that displays active 

octreotide on the viral surface that allows targeted delivery of a tumor necrosis 

factor (TNF) transgene, significantly reduced the size of  pNETs in a 

conditional Men1 pancreatic knockout mouse model (Men1f/f;RIP-Cre) (265). 

Despite the promise of gene therapy representing a potentially curative 

treatment for MEN1-assocaited NETs, its translation into clinical trials, may be 

complex as challenges around delivery, specificity and off target effects still 

need to be clarified. 

    One of the key functions of menin is the regulation of gene 

transcription through epigenetic mechanisms, including the modification of 

histones via methyltransferase and deacetylase complexes (described above). 

The use of epigenetic-targeting compounds may therefore have utility in 

treating MEN1-associated tumors. Preclinical studies have shown that an 

inhibitor, JQ1, of the BET protein family that binds to acetylated histone 

residues to promote gene transcription, may have efficacy in MEN1-associated 

pNETs as it significantly reduced proliferation and increased apoptosis of 

pNETs in a conditional Men1 knockout mouse model (76). Furthermore, JQ1 

has also been shown to reduce secretion of ACTH from the pituitary tumor cell 

line, AtT20 (266). In addition, another BET inhibitor CPI203, was able to 
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significantly reduce proliferation of a BON-1 xenograft model, further 

indicating the likely utility of BET inhibition for pNETs (267). The utility of 

histone deacetylases inhibitors (HDACi) has also been evaluated in preclinical 

NET models. The HDAC5 inhibitor, LMK-235, significantly reduced proliferation 

and increased apoptosis of pNET cell lines (268), and etinostat, a HDAC1/3 

inhibitor could significantly inhibit the expression of master regulator proteins 

of metastatic gastreoenteropancreatic NETs, as well as reduce tumor growth of 

the midgut H-STS cell line xenograft mouse model (269). In addition, the HDACi 

SAHA has been reported to significantly decrease proliferation, and increase 

apoptosis of a growth hormone and prolactin secreting GH3 rat pituitary tumor 

cell line, and to decrease cell viability and ACTH secretion from AtT20 and 

human derived corticotroph tumor (hCtT) cells (270, 271). Similarly, the HDACi 

trichostatin also significantly decreased proliferation, and inhibited ACTH 

production in AtT20 cells (272). A number of BET and HDAC inhibitors are 

already in clinical trials, and thus these may offer a promising novel 

therapeutic approach for MEN1-associated NETs. 

         Menin has also been reported to promote -catenin 

phosphorylation, resulting in inhibition of Wnt signaling, therefore when 

menin function is lost -catenin accumulates in the nucleus and promotes 

gene transcription (104). The -catenin inhibitor PRI-724 has been shown to 
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significantly decrease pNET cell line viability (273), and a preclinical study in 

conditional Men1 knockout mice indicated that the -catenin antagonist 

PKF115-584 decreased the number and size of pNETs, as well as increased 

overall mouse survival (63). PRI-724 is already in clinical trials for other 

conditions (273), and therefore this may provide a novel pharmacological 

agent for assessment in MEN1-NETs. 

   RTK and mTOR inhibitors are already in clinical use, although they may 

have limited efficacy and patients often stop responding to these inhibitors. 

Therefore, a number of preclinical studies have investigated different 

approaches for targeting RTK and mTOR signaling pathways. This includes 

targeting angiogenic pathways with an anti-VEGF (the cytokine that binds to 

the RTK, VEGFR) monoclonal antibody. However, studies in a RipTag2 

insulinoma mouse model indicated that although these compounds reduced 

tumor burden, they increased invasiveness and metastasis (274). This 

increased invasiveness may be overcome by targeting multiple RTK pathways 

simultaneously. For example, concurrent inhibition of VEGF and cMET using 

sunitibib and crizotinib, respectively, reduced invasion and metastasis in the 

RipTag2 pNET model (275). Furthermore, the VEGF, PDGF and FGF targeting 

small kinase inhibitor nindetanib, has been reported to decrease tumor 

growth, and prolong survival of Rip1Tag2 insulinomas, without increasing local 
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invasiveness or metastatic spread (276). In addition, inhibition of nitric oxide 

(NO) synthase may also prove a novel angiogenic-targeting pharmacological 

approach, as the NO synthase inhibitor L-NAME could increase constriction of 

tumor supplying arterioles in pNETs of a conventional Men1 knockout mouse 

model (277). Also, functionally active angiogenic peptides, including for 

thrompospondin 1 (TSP1) have been reported to suppress angiogenesis and 

tumor growth in RipTag2 pNETs, and as menin interacts with SMAD3, which is 

downstream of TSP1 receptor signaling, this may also provide a menin-

targeted therapy for MEN1 patients (104, 278). Finally, novel mTOR inhibitors 

are being investigated, for example sapanisertib may provide a novel 

pharmacological agent for everolimus-resistant pNETs. Thus, sapanisertib 

caused tumor shrinkage of MEN1 mutant patient xenografts that were 

implanted in female athymic nude mice, and these included tumors that were 

non-responsive to everolimus (279).  

   Pharmacological agents have efficacy in reducing proliferation and 

hormone secretion, however they may also have utility for chemoprevention, 

which would be of particular importance in MEN1 patients, to prevent or delay 

tumor occurrence. SSAs may have a role in chemoprevention as paseriotide 

treatment of a conventional Men1 knockout mouse model and a Pdx1-

Cre Men1 knockout model (Men1f/f;Pdx1-Cre) significantly reduced pNET 
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occurrence (280, 281). Furthermore, lanreotide treatment of a 

conventional Men1 knockout mouse model also significantly decreased the 

number of new pNETs, and pNET size compared to vehicle treated mice (282). 

In addition, clinical trials indicate that patients treated with octreotide have 

stable disease (245, 246). Therefore, the administration of SSAs to familial or 

genetically diagnosed MEN1 patients, may provide a novel approach for 

preventing or controlling tumor development. 

   Preclinical studies of novel agents targeting menin specific pathways 

that are perturbed upon menin loss in tumors may provide a wealth of 

pharmacological approaches for the treatment of MEN1-associated tumors. 

These, will however need to be carefully evaluated in prospective clinical trials, 

specifically recruiting MEN1 patients.  

  

PROGNOSIS AND QUALITY OF LIFE   

   MEN1 is linked to a higher mortality when compared to a normal 

population or to non-affected members in MEN1 families, with DP-NETs and 

thymic NETs representing the main cause (70%) of death (3, 283). Even if 

uncommon, other tumors such as adrenal carcinoma and parathyroid 

carcinoma are fatal (13, 284). A predisposition to breast  cancer, mainly of the 
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luminal type  has been reported in female MEN1 patients at a mean age of 45 

years, earlier than in the general population, thereby recommending breast 

cancer screening in MEN1 patients around the age of 40 years (285). 

   In females with MEN1, the mortality is lower than in males with MEN1, 

probably due to the lower incidence of thymic NETs in females. Moreover, 

sporadic MEN1 cases show higher mortality than familial cases. All these 

observations impact the surveillance strategies of MEN1 patients.  

   The publication of the last guidance paper (3) has certainly contributed 

to decrease the percentage of deaths related to MEN1 tumors, with a 

significant an improvement in the management of MEN1 patients. 

  The oncological nature of MEN1, the multiplicity of tumors, the 

aggressiveness of some of the neoplasms, the lack of solid data on prognosis 

and of phenotype genotype correlations increase the potential for a 

considerable influence of the disease in the health-related quality of life 

(HRQoL) of the affected patients. Recent studies support this hypothesis, 

showing a role of the disease and its management in the lower quality of life 

scores in adults with MEN1 (286-289). Important variables that influence 

HRQoL in MEN1 patients are the possibility to refer to a dedicated 
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mulridisciplinary center and to be supported by a dedicated advocacy group 

for of patients. 

   Unfortunately, specific questionnaires measuring HRQoL for MEN1 or 

other hereditary cancers have not yet been developed, contributing to an 

under- or over-estimation of specific traits of the syndrome 

   

CONCLUSIONS AND FUTURE PROSPECTS 

   Considerable progresses have been made in the past decade to study 

the natural history, diagnosis and management of MEN1, and in basic and 

preclinical research to understand the pathophysiology of MEN1-associated 

tumors. This review has outlined the major advances since the publication of 

the most recent MEN1 guidance paper (3). The combined efforts of basic 

researchers and clinicians have been instrumental to alleviate the morbidity 

and mortality of affected individuals. National Registries and Databases have 

been developed that can facilitate access to relatively large well-characterized 

patient populations for diagnostic and therapeutic developments. Patient 

Associations and Federations have been developed worldwide that can 

reinforce future screening or intervention programs. In parallel, centers for 

excellence are now being recognized and these represent quality contacts for 
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reliable information and clinical care for any type of patients’ needs. Basic 

research on the characterization of menin and mouse models on Men1 loss has 

revealed protein interactions and pathways affected in tumors that can be 

targeted for potential therapeutic options. 

   However, many important questions are still unanswered, and 

appropriate and timely recommendations must be offered to the clinicians 

involved in the care of MEN1 patients. 

   MEN1 is a complex disorder predisposing to over 20 benign and 

malignant endocrine and non-endocrine neoplasms. The multidisciplinary team 

involved in the clinical care of these patients should represent experts in 

endocrinology, radiology, gastroenterology, surgery, and genetics working in 

tight connection. This is an essential requirement for the best care of this 

difficult disease. 

  Periodic reassessment of the biomedical literature and raw genetic data 

by experts is encouraged that can help to identify new genes or as yet 

unrecognized syndromes in individuals with specific syndromic features but 

who lack known genetic susceptibility mutations. Further work is needed to 

identify epigenetic or modifying factors that may explain even rare 
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associations with uncommon tumors for MEN1. Biobanks of MEN1 biological 

materials should be established.   

Preclinical and clinical evidences point to the efficacy of potential 

pharmacological treatments for MEN1 tumors These promising data are a clear 

indication for the development of multicenter clinical trials nationally and 

internationally. These studies can benefit from the development of liquid 

biopsy assays that could predict specific therapeutic options for patients and 

efficacy of the therapy. 

Additionally, the design of a dedicated HRQoL questionnaire will 

represent a necessary step to increase the analytical effectiveness of any given 

treatment in MEN1. Advocacy Associations will be instrumental to carry on 

these studies. 
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 Table 1. Mouse models of menin loss to study functional interactions* 

  

Double knockout with conventional Men1
+/-

 

GENOTYPE PHENOTYPE (Islet tumorigenesis) Men1 LOH 

Rb1
+/-

 Similar to Men1
+/-

 Yes 

Tp53
+/-

 Similar to Men1
+/-

 Yes 

Cdkn2c
-/-

 Accelerated No 

Cdkn1b
-/-

 Similar to Men1
+/-

 Yes 

Cdk2
-/-

 Similar to Men1
+/-

 Yes 

Cdk4
-/-

 No tumors (islet and pituitary hypoplasia from Cdk4
-/-

) No 

  

Double knockout with conditional menin loss in β-cells (Men1
f/f

;RIP-Cre) 

GENOTYPE PHENOTYPE (Islet tumorigenesis and survival) 

Pten
f/f

 Accelerated tumorigenesis and shorter lifespan 

Kmt2a
f/f

 Accelerated tumorigenesis and shorter lifespan 

Kdm5a
f/f

 Decreased tumorigenesis and prolonged survival 

Ctnnb1
f/f

 Decreased tumorigenesis and prolonged survival 

Inhbb
-/-

 No effect on tumorigenesis but prolonged survival 

  

Oncogenic KRas mutant with conditional menin deficiency in β-cells (Men1
+/f

;RIP-Cre) 

GENOTYPE PHENOTYPE (Islets of P5 neonates) 

Kras(G12D) Kras(G12D) expression enhanced, rather than inhibited β-cell proliferation 

  

*References are cited in the main text 
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FIGURES LEGENDS 

 Fig. 1 Tumors associated with MEN1 

Fig. 2. 3D crystal structure of human menin alone or together with 

interacting partners. (A) Structure of menin showing a pocket/cavity for 

protein-protein interaction (PDB ID 3U84). The different domains of menin are 

color coded: „N-terminus‟ in pale green (1-101), „thumb‟ in green-cyan (102-

230), „palm‟ in olive green (231-386), and „fingers‟ in dark green (387-end). (B) 

Structure of menin interacting with the menin-binding motif (MBM) of JUND 

(amino acid 27-47, in purple) (PDB ID 3U86). (C) Structure of menin interacting 

with the MBM of MLL1 (amino acid 6-13, in gold) (PDB ID 3U85). (D) The 

ternary complex of menin with interacting regions in LEDGF (amino acid 347-

435, in red) and MLL1 (MBM-LEGDF binding motif (LBM), amino acid 6-153, in 

gold) (PDB ID 3U88). 

  To facilitate crystallization, the following regions were deleted (and not 

present in the structures shown in this Figure): an unstructured loop (amino 

acid 460–519) in menin, a short fragment (amino acid 40–45) in the JUND-

MBM and two loop regions (amino acids 16–22 and 36–102) in the MLL1-

MBM-LBM. 
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The structural images were generated by using PyMOL (Schrodinger, Inc) 

(https://pymol.org). 

Fig. 3 Schematic representation of epigenetic regulation in MEN1-

associated tumors. Epigenetic modification in normal cells is shown on the 

left. Aberrant epigenetic change observed or predicted upon menin loss in 

tumors is shown in the middle. Consequence of the aberrant epigenetic 

change is shown on the right. Green and red indicates the nature of the 

specific histone or DNA  epigenetic modification, active or repressive mark of 

gene expression, respectively. Open black oval with a slanted line indicates loss 

of that histone mark. Alternative lengthening of telomeres (ALT) is activated in 

tumors and it is absent in normal cells (indicated by the blue open oval with a 

slanted line). Not shown is miR-24-mediated epigenetic regulation. 

 Fig. 4 Percent distribution of the different types 

 of MEN1 mutations. Obvious inactivation of menin in predicted by 

nonsense, frameshift, and splice mutations, and large deletions that constitute 

69% of the mutations. Missense and in-frame insertion or deletion (indel) 

mutations are sliced out of the pie chart to indicate the potential of variants of 

unknown significance among these two types of mutations. 
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 Fig. 5 Schematic diagram for a suggested approach to germline genetic 

screening in MEN1 and MEN1-like disease. MEN1: a patient with two or more 

MEN1-associated endocrine tumors. MEN1-like: a patient with as few as any 

one of the three main MEN1-associated endocrine tumors. Clinical MEN1: 

patients with MEN1 or MEN1-like disease features. Genetic MEN1: 

germline MEN1 mutation-positive. WGS: whole genome sequencing. WES: 

whole exome sequencing. +ve = genetic test is positive, -ve = genetic test is 

negative, and +ve* = genetic test is positive as per ACMG-AMP guidelines. 

Fig. 6 Intraoperative view after robotic pancreaticoduodenectomy of a 

pNET in the head of the pancreas before reconstruction . 

CHA: common hepatic atery, IVC: inferior vene cava, SMA: superior 

mesenteric artery, SMV: superior mesenteric vein 

 Fig. 7  Emerging therapies for MEN1. Menin, encoded by the MEN1 gene 

has roles in multiple pathways associated with cell proliferation. These can be 

targeted by emerging compounds, including receptor tyrosin kinase (RTKs) 

inhibitors, novel mTOR inhibitors, β-catenin antagonists, epigenetic 

modulators, and thrombospondin analogues. In addition, preclinical studies 

indicate MEN1 gene replacement may have efficacy in MEN1 patients, and 

somatostatin (SST) analogues may have chemopreventative efficacy.   
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Essential point 

 

 The discovered pathways regulated by menin are opening new 

opportunities for novel therapeutical interventions in MEN1. 

 

 Genetic diagnosis of MEN1 is making possible a distinct management of 

the genetically positive and negative patients. 

 

 Sensitive areas, as MEN1 clinical course in the youngsters and in 

pregnancy, can be clinically managed treasuring the accumulated 

experiences. 

 

 MEN1 pancreatic neuroendocrine tumors are better understood in their 

pathogenesis and in their impact in the management of the affected 

patients. 

 

 Surgical and pharmacological therapies are opening to a brighter future in 

the clinical course of MEN1. 
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